
Reachability in multi-agent transfer systems
(Extended Version)

Nathalie Bertrand1[0000−0002−9957−5394], Loïc Hélouët1[0000−0001−7056−2672],
Engel Lefaucheux2[0000−0003−0875−300X], and Luca

Paparazzo1[0009−0007−1134−000X]

1 University of Rennes, Inria, CNRS, Rennes, France
2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

{nathalie.bertrand,loic.helouet,engel.lefaucheux,luca.paparazzo}@inria.fr

Abstract. This paper introduces collaborative reachability games with
energy constraints. In the considered arenas, agents can spend or gain
energy during moves, or share it with their peers if their current position
allows it. We study several variants of energy reachability games where
agents move either synchronously or asynchronously, and with/without
constraints on energy transfers among peers. We show that these prob-
lems have different complexities ranging from NP to EXPSPACE.

Keywords: Multi-Agent Systems · Quantitative verification · VASS ·
Collaborative games · Planning

1 Introduction

Cooperation of several agents occurs in a variety of applications, such as robotics,
traffic control and aviation to name a few. In contrast to adversarial games, in
such cooperative settings, the agents collaborate to achieve a common goal. A
typical instantiation of this general framework is the multi-agent path finding
problem [11], in which one aims at designing a plan to move multiple agents
while avoiding collisions to perform a global task. Beyond Boolean objectives
such as coverage of an area, or reachability of a position for each agent, intro-
ducing quantities in models for multi-agent systems is crucial to represent energy
or financial cost. Quantitative settings where multiple agents interact are for in-
stance useful formalisms to find optimal management strategies to control cyber
physical systems (CPS) where objectives are not purely Boolean, but also aim
at optimizing some measure. A variety of settings of quantitative multi-player
games have been proposed in the literature [4,5,6,12]. Game concepts such as
the famous Nash equilibria [20] can then be studied, for instance to efficiently
distribute energy in smart grids [5].

In this paper, we introduce a new quantitative multi-agent model, in which
agents move on their own local arena and are given a goal, i.e., a particular
vertex to reach. Local arenas are equipped with integer weights on edges to
represent energy variations. Each agent stores energy and, when moving from

2 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

a vertex to a consecutive one, gains energy if the weight is positive, or loses
energy if the weight is negative. Interestingly, agents may cooperate by sending
some or all of their stored energy to other agents. The objective is to design a
collaborative plan moving each agent to its target vertex while staying within
the energy available in the system, possibly using transfers among peers. We
coin this model multi-agent transfer systems, or simply transfer systems.

Several semantics can be considered for transfer systems: either agents move
synchronously or asynchronously. In any case, they can only take an edge if their
stored energy is sufficient, as their energy level cannot drop below 0. We consider
the natural question of global reachability objectives, where all agents must reach
their assigned target simultaneously. Our setting thus shares the objective of
multi-agent path finding [11]. There are however several crucial differences: first,
in transfer systems, agents move on their respective local arenas rather than on
a common space; second, transfer systems are equipped with energy variations
and agents must move within energy budget; finally, in transfer systems agents
can transfer energy one to another.

Transfer systems form a particularly suited model for modern urban trans-
port networks equipped with regenerative braking systems. In these CPSs, the
kinetic energy of a braking vehicle can be converted into electric energy, trans-
ferred to the power network and used by other close vehicles. Another possible
application is the study of the logistics of complex systems in which resources
must be provided at specific locations and times for the success of a mission.

Multi-weighted energy games [10] are close to our transfer systems. In multi-
weighted energy games, stored quantities are k-vectors of integers and moves are
also labeled by integer vectors of same dimension. Different to our setting, the
number of players is fixed to at most two. The objective in these games is to play
infinitely while respecting energy bounds on each coordinate: a lower bound or a
combination of lower and a weak/strong upper bounds. With a single player, the
problem with a lower bound is NP-hard and k-EXPTIME already, and with two
players, the complexity is EXPTIME-hard and in k-EXPTIME. These complexity
proofs build on results of [3]. One can consider transfer systems with n agents as a
reachability question in a multi-weighted game with a single player (representing
the coalition of agents) of dimension n, one dimension for each agent that must
remain non-negative. For an arbitrary dimension, existence of an infinite run in
multiweighted games with lower bounds is EXPSPACE-complete, and becomes
PSPACE-complete if integral upper bound are set for each dimension. Notice that
this setting has several differences with our questions in transfer systems; one of
the main differences is that [10] considers the existence of infinite runs, while the
questions addressed in this paper would be encoded as coverability questions.
Most importantly, transfer systems are given succinctly by local arenas for each
agent, while multi-weighted energy games are monolithic.

As our model deals with transfer of energy, and is close to Petri nets, a
natural question is whether reachability in transfer systems is equivalent to a
reachability or coverability in transfer Petri nets [8]. Transfer Petri nets extend
Petri nets with flow relations that can transfer the whole contents of a place p to

Reachability in multi-agent transfer systems (Extended Version) 3

another place p′ when firing a transition. Our complexity results on transfer sys-
tems prove that reachability for transfer systems and coverability/reachability
for transfer nets are different questions. Indeed, transfer Petri nets can easily
simulate Reset Petri nets a model where reachability is undecidable [1], and
coverability is Ackermann-hard [23]. In contrast, our reachablity problems on
transfer systems remain decidable in almost all cases, and have at worst com-
plexities in EXPSPACE when decidable. From a modeling perspective, transfers
in Petri nets and in transfer systems are quite different: in Petri nets the whole
contents of a place is transferred in one step while in our model, an agent can
share only a part of its energy.

The semantics of transfer systems can be captured by vector addition sys-
tems with states (VASS) [14], or equivalently by Petri nets, and our reachabil-
ity problems as coverability questions. EXPSPACE-hardness for coverability in
VAS was shown by[18], and the matching EXPSPACE upper bound was shown
by [21]. A natural question is whether one has to pay the full complexity of
VASS to solve our reachability problems in transfer systems. We show in this
paper that the answer depends on the chosen characteristics of the model. For
instance, reachability for transfer systems with energy transfers always enabled
and under asynchronous semantics lies between NP and PSPACE. Also, under
asynchronous semantics with arbitrary transfer groups, the complexity lies be-
tween PSPACE and EXPSPACE. More surprisingly, if one relaxes synchronicity
by allowing agents that lack energy to idle (resulting in the so-called weak syn-
chronous semantics), reachability becomes undecidable.

The rest of the paper is organized as follows. Section 2 presents the model
and the notations that will be used throughout the paper. Section 3 details the
different possible semantics of the model: asynchronous, strongly synchronous,
and weakly synchronous and shows the relations between these semantics. Sec-
tion 4 studies the complexity of reachability under all semantics when transfer
of energy can occur at any time between agents. Section 5 considers reachability
for systems with restricted local transfers, that can occur only in some states.
Due to space constraints, some proofs are omitted postponed and can be found
in appendix.

2 Transfer systems

Transfer systems are multi-agent systems, in which every agent plays on a local
weighted graph, and the communication between agents is limited.

Definition 1. A local arena A = (V,E) is a directed weighted graph where V
is a finite set of vertices, E ⊆ V × Z× V describes the edges of the arena.

Intuitively, the weight on an edge represents the amount of energy an agent
gains (if positive) or loses (if negative) while traversing that edge. Communica-
tion between agents is limited to energy transfers, and is formalised by transfer
groups that specify conditions on the vertices of the agents to enable transfers.

4 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

Definition 2. Let n ∈ N, A = {A1, . . . , An} be a set of local arenas with
Ai = (Vi, Ei) for every i ∈ J1, nK (assuming all Vi are disjoint sets) and T :⋃

i∈1..n Vi → N is a partial map defining transfer groups.
A and T induce the transfer system TS = 〈A, T 〉.

We will say that vertices v, v′ belong to the same transfer group if T (v) =
T (v′), and impose that transfer groups are not singletons, are disjoint sets and
contain states from at least two arenas. For convenience, we will often define
transfer groups as sets of states T1, . . . , Tk where Ti = {v | T (v) = i}. Writing
V =

⋃
i∈1..n Vi, the size of a transfer arena is defined as |TS| = |V | · (|T |+ 1) +

|V |2. log(wmax) where wmax is the largest absolute value of a weight appearing
in an arena, and |T | is bounded |V | · log(|V |).

The semantics of a transfer system TS = 〈A, T 〉 is given in terms of a
transition system. A configuration of TS consists of the current vertex of each
agent and their energy level: we write C,C ′, etc. for a configuration, and Γ =(∏n

i=1 Vi
)
×Nn for the set of all configurations. For a configuration C = (S,−→e),

S ∈
∏n

i=1 Vi is referred to as the global state (or simply state) and −→e as the
energy vector. When the dimension n is clear from the context, we use

−→
0 to

denote the null energy vector (0, . . . , 0) ∈ Nn.
Transitions between configurations are induced by moves of the agents on

their local arenas, or energy transfers between agents when permitted by the
transfer groups. An agent Ai cannot move along an edge qi

−w−→ q′i with negative
weight −w if its energy level ei is lower than w. We will say that edge qi

w−→ q′i
is enabled if ei + w ≥ 0. For move transitions, we distinguish several semantics,
depending on whether the agents move simultaneously or not.

Definition 3. Consider two configurations C = 〈(q1, . . . , qn), (e1, . . . , en)〉 and
C ′ = 〈(q′1, . . . , q′n), (e′1, . . . , e′n)〉.

move There is a move transition from C to C ′ if one of the following holds
asynchronous ∃i ∈ J1, nK : qi

w−→ q′i ∈ Ei, e′i = ei + w ≥ 0 and ∀j 6=
i, (q′j , e

′
j) = (qj , ej), corresponding to the single agent Ai moving along an

edge of its local arena. This results in an asynchronous move transition,
and is denoted C −→a

m C ′.
synchronous ∀i ∈ J1, nK, qi

wi−→ q′i ∈ Ei and e′i = ei+wi ≥ 0, corresponding
to all agents moving simultaneously in their respective local arenas. This
results in a strongly synchronous move transition, denoted C −→s

m C ′.
weakly synchronous ∀i ∈ J1, nK, either qi

wi−→ q′i ∈ Ei and e′i = ei+wi ≥ 0

or (q′i, e
′
i) = (qi, ei) and ∀qi

wi−→ q′′i ∈ Ei, ei + wi < 0, corresponding to a
synchronous move of all agents that have an enabled edge. This results
in a weakly synchronous move transition, denoted C −→w

m C ′.
transfer There is a transfer transition from C to C ′ if ∀i, qi = q′i, and ∃i, j ∈

J1, nK, T (qi) = T (qj), ei+ej = e′i+e
′
j and ∀k /∈ {i, j}, ek = e′k, corresponding

to a transfer between agents Ai and Aj on vertices of a same transfer group.
This transition is denoted C −→t C

′.

Reachability in multi-agent transfer systems (Extended Version) 5

We use −→a (resp. −→s, resp. −→w) to denote a transition that is either
a transfer or an asynchronous (resp. strongly synchronous, resp. weakly syn-
chronous) move and call it an asynchronous (resp. strongly synchronous, resp.
weakly synchronous) transition for short. For instance −→a=−→a

m ∪ −→t. We
also refer to any type of move transition with −→m: −→m=−→a

m ∪ −→s
m

∪ −→w
m. Finally, an arbitrary transition is simply denoted −→. Notice that

agents change their local vertex in their arena during moves, and stay on the
same vertex during transfers.

As usual, sequences of transitions define runs of the transfer system. A fi-
nite/infinite asynchronous run (resp. strongly synchronous run, resp. weakly syn-
chronous run) over TS is a finite/infinite sequence of asynchronous (resp. strongly
synchronous, resp. weakly synchronous) transitions. We will write C a C ′

(resp. C s C ′, C w C ′) when there exists an asynchronous (resp. syn-
chronous, weakly synchronous) run from C to C ′. The set of asynchronous
(resp. strongly synchronous, resp. weakly synchronous) runs over TS is de-
noted Runsa(TS) (resp. Runss(TS), resp. Runsw(TS)). We refer to them as the
asynchronous, strongly synchronous and weakly synchronous semantics of the
transfer system, respectively, that we sometimes abbreviate into a-semantics,
s-semantics and w-semantics.

We observe the following relations between runs of transfer systems under the
various semantics. First of all, Runss(TS) ⊆ Runsw(TS). Indeed, by definition,
for every two configurations C,C ′, if C −→s

m C ′ then C −→w
m C ′. One can

also notice that if C −→w
m C ′, then there exists a sequence of move transitions

C −→a
m C1 −→a

m · · · −→a
m C ′. Thus, a run in the weakly synchronous semantics

can be simulated by a run in the asynchronous semantics.

p0 p1 p2
+1

A1 : q0

q1

q2

−1
A2 :

Fig. 1. Transfer system with two agents and a single transfer group with p1 and q0:
T = {{p1, q0}}. Null weights are omitted.

Example 1. Consider the transfer system with two agents depicted in Figure 1,
where boxed vertices belong to the same transfer group. Let C0 = 〈(p0, q0), (0, 0)〉
be the initial configuration. Then, there exists an asynchronous run from C0

to the target state (p2, q1), namely 〈(p0, q0), (0, 0)〉 −→a
m 〈(p1, q0), (1, 0)〉 −→t

〈(p1, q0), (0, 1)〉 −→a
m 〈(p1, q1), (0, 0)〉 −→a

m 〈(p2, q1), (0, 0)〉. Yet, there are no
strongly nor weakly synchronous runs to the target.

Consider now the transfer system depicted in Figure 2. Again, there exists
an asynchronous execution that reaches the target state : 〈(p0, q0), (0, 0)〉 −→a

m

〈(p1, q0), (0, 0)〉 −→a
m 〈(p1, q0), (1, 0)〉 −→a

m 〈(p1, q1), (1, 1)〉 −→t 〈(p1, q1), (0, 2)〉

6 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

−→a
m 〈(p1, q3), (0, 0)〉 −→a

m 〈(p2, q3), (0, 0)〉. Also, since the only transition fire-
able from (q1, 1) for A′2 leads to q2, there is no synchronous run to (p2, q3).
Finally, even though A′2 has a move transition available from (q1, 1) leading
to q2, there exists a weakly synchronous run that avoids the sink state q2
and reaches the global target state: 〈(p0, q0), (0, 0)〉 −→w

m 〈(p1, q1), (0, 1)〉 −→t

〈(p1, q1), (1, 0)〉 −→w
m 〈(p1, q1), (2, 0)〉 −→t 〈(p1, q1), (0, 2)〉 −→w

m 〈(p2, q3), (0, 0)〉.
Interestingly, in q1 it is in A′2’s interest to send energy to A′1, thus not being able
to fire any move transition while waiting for A′1 to accumulate enough energy
and send it back so that both reach their target.

p0 p1 p2

+1

A′1 : q0 q1

q2

q3

+1
−1

−2
A′2 :

Fig. 2. Transfer system with two agents and a single transfer group with p1 and q1:
T = {{p1, q1}}. Null weights are omitted.

Reachability in transfer systems The transfer system is equipped with one reach-
ability goal for each agent, given by a set of initial vertices and a set of final
vertices. The global objective is then to find a run in which each agent reaches its
final vertex, starting from its initial vertex and with initial energy 0. Similarly to
vector addition systems with states (VASS), recall that the energy level of agents
cannot drop below 0. As agents can reach their final vertices with an arbitrary
energy level, we naturally introduce a coverability relation on configurations.

For two configurations C = 〈S, (e1, . . . , en)〉 and C ′ = 〈S′, (e′1, . . . , e′n)〉, we
say C ′ covers C, written C /C ′, if S = S′ and ∀i ∈ J1, nK, ei ≤ e′i. For any global
state S we define the covering of S as S↑ = {C | 〈S,−→0 〉 /C}. We are now ready
to define the verification problems of interest for transfer systems:

Problem x-Reach
Input: A transfer system TS, an initial state S0 and a final state Sf

Question: Does there exist Cf ∈ Sf↑ and a run ρ : 〈S0,
−→
0 〉 x Cf ?

Note that this defines three decision problems, when one varies the seman-
tics (parameter x): asynchronous, strongly synchronous or weakly synchronous.
Moreover, we consider arbitrary transfer groups, as well as the special case of
a unique trivial transfer group T> =

⋃n
i=1 Vi. We later use `x-Reach and ux-

Reach to highlight the transfer group type and respectively denote the variant
with arbitrary transfer groups or a unique trivial transfer group.

Example 2. Back to the example of Figures 1 and 2, 〈(A1, A2), {{p1, q0}}〉 is
a positive instance of `a-Reach, and 〈(A′1, A′2), {T>}〉 is a positive instance of

Reachability in multi-agent transfer systems (Extended Version) 7

uw-Reach. but there exists only a single positive run for uw-Reach which is
the same as for `w-Reach.

In the rest of the paper, we study the complexity of all variants of the tx-
Reach problem. The following table summarizes the obtained results:

semantics
transfer asynchronous strongly synchronous weakly synchronous
unique NP-hard (Th. 3) PSPACE-c. (Th. 4 & Th. 5)group in PSPACE (Cor. 1)

arbitrary PSPACE-c. PSPACE-hard (Cor. 3) undecidable (Th. 9)groups (Th. 6 & Th. 7) in EXPSPACE (Th. 8)

3 Relationships between the different semantics

A first, immediate, observation is that the unique variants of our decision prob-
lem are special cases of the local ones. Indeed, any instance of a ux-Reach with
a single trivial transfer group is also an instance of `x-Reach. There is thus an
immediate polynomial reduction from one to the other:

Proposition 1. For every semantics x ∈ {a, s, w}, ux-Reach �P `x-Reach.

The following theorems relate to the asynchronous, strongly synchronous and
weakly synchronous semantics (for a fixed transfer group type):

Theorem 1. For every transfer group type t ∈ {u, `}, ta-Reach �P ts-Reach.

Proof. Let TS = 〈{A1, . . . , An}, T 〉 be a transfer system, and S0, Sf initial and
final global states. From TS, we build the transfer system TS′ in which ev-
ery vertex of every agent is added a self-loop with weight 0. Formally, TS′ =
〈{B1, . . . , Bn}, T 〉 where for every i ∈ J1, nK, if Ai = (Vi, Ei) then Bi = (Vi, Fi)

with Fi = Ei ∪ {q
0−→ q | q ∈ Vi}. We claim that

∃〈S0,
−→
0 〉 a

TS 〈Sf ,
−→e 〉 ∈ Runsa(TS) iff ∃〈S0,

−→
0 〉 s

TS′ 〈Sf ,
−→e 〉 ∈ Runss(TS′).

Note that the difference between asynchronous and strongly synchronous se-
mantics only lies in move transitions (and do not concern transfer transitions).
Intuitively, the 0-self-loops in TS′ are used to simulate an asynchronous run over
TS by a synchronous run over TS′. Reciprocally, synchronous transitions over TS′

can be serialized (and 0-self-loops can be removed) to obtain an asynchronous
run over TS. ut

Theorem 2. For every transfer group type t ∈ {u, `}, ts-Reach �P tw-Reach.

Proof. Let TS = 〈{A1, . . . , An}, T 〉 be a transfer system, and S0, Sf initial and
final global states. From TS, we build the transfer system TS′ in which each
local arena Ai is augmented with a fresh vertex Badi and additional edges
from every vertex to Badi with weight 0. Formally, TS′ = 〈{B1, . . . , Bn}, T 〉

8 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

where for every i ∈ J1, nK, if Ai = (Vi, Ei) then Bi = (Vi ∪ {Badi}, Fi) with
Fi = Ei ∪ {q

0−→ Badi | q ∈ Vi ∪ {Badi}}. We claim that

∃〈S0,
−→
0 〉 s

TS 〈Sf ,
−→e 〉 ∈ Runss(TS) iff ∃〈S0,

−→
0 〉 w

TS′ 〈Sf ,
−→e 〉 ∈ Runsw(TS′).

Note that the difference between strongly and weakly synchronous semantics
only lies in move transitions (and do not concern transfer transitions). Since the
additional edges have weight 0, every agent always has an enabled edge. This
means that for TS′, the strongly synchronous runs and weakly synchronous runs
coincide. Moreover, every vertex Badi is a sink. Hence, a run reaching the global
final states cannot visit Badi. Finally, by construction, the runs of Runsw(TS′)
that avoid all vertices Badi are exactly the runs of Runss(TS). ut

Remark 1 (Transfer systems and VASS.). In general, reachability in transfer sys-
tems can be cast into state-coverability of VASS. The state-space of the VASS
is the product of sets of vertices for each agent, thus exponential in the transfer
system size. The VASS transitions are induced by transfer transitions and move
transitions, and their precise definition depends on the semantics of move transi-
tions. In the case of a unique transfer group, for asynchronous and strongly syn-
chronous semantics, 1-dim VASS even suffice, since intuitively, a unique counter
is needed to store the total energy amount shared by the agents. For the weakly
synchronous semantics however, it is less obvious how to represent the energy
levels of agents with a single counter. Indeed, a global energy level exceeding
the energies required to allow one move per agent is not a sufficient condition
for all agents to move. For instance, an agent may have the incentive to transfer
energy to another agent in order to be temporarilly blocked (see Examples 1
and 2). This suggests that the encoding in 1-dim VASS is not immediate for
transfer systems under the weakly synchronous semantics, and that 1 dimension
per agent may be nedded. Further, up to our knowledge, the state of the art
on state-coverability in 1-dim VASS [13,17] yields worse complexity results than
the direct proofs we present in the coming section, since the obtained VASS is
exponential in the transfer system size. For arbitrary transfer groups, the situ-
ation is even worse since the reduction would be to an exponential size n-dim
VASS.

4 Unique trivial transfer group

Let us start with the particular case of a unique and trivial transfer group:
TS = 〈{A1, . . . , An}, {T>}〉. In such transfer systems, in every configuration,
agents can transfer energy to others, regardless of their respective local vertices.

4.1 Asynchronous Semantics

For the asynchronous semantics, we prove the following complexity lower-bound:

Theorem 3. ua-Reach is NP-hard.

Reachability in multi-agent transfer systems (Extended Version) 9

Proof. We perform a reduction from the SubsetSum problem, that we recall
now. Given a finite set of integers S = {n1, . . . , nm} and a target integer K ∈ N,
the subset sum problem consists in determining whether there exists a subset I ⊆
J1,mK such that

∑
i∈I ni = K. This problem is known to be NP-complete [15].

From an instance S = 〈{n1, . . . , nm},K〉 of SubsetSum, we build a transfer
system TS = 〈(AC , A1, . . . , Am), {T>}〉 together with initial and final states
S0, Sf as represented in Figure 3, and such that S is a positive instance of
SubsetSum iff there exists Cf ∈ Sf↑ and 〈S0,

−→
0 〉 a Cf in Runsa(TS).

c0AC : c1 c2 c3 c4
K −mB +mB −2K

qi0

qi1

qi5
qi2 qi3 qi4

Ai :

+B −B

−ni
+B −B

+2ni

Fig. 3. Transfer system for the NP-hardness of ua-Reach. Incoming arrows point to
initial vertices, and doubly circled vertices are final. B = 2mK.

Before giving the formal proof, let us explain the intuition of the reduction.
The system is formed of one "control" agent AC , as well as one agent Ai for
each integer ni. The transfer system starts with K energy units (gained by the
controller AC). In a first step, the agents Ai will have to select whether or not
the solution set I contains i. This choice corresponds to two branches of the
local arena Ai. If they decide i ∈ I, they have to pay ni, which ensures that
the sum of all the values selected by the agents is at most K. After this choice,
each Ai agent receives a very large value B. This is a synchronization point: AC

needs all the agents to have received B energy units before it can progress, thus
ensuring that every agent made their choice. In the third step, each agent Ai

which decided that i ∈ I receives 2ni before reaching its target. As AC needs
2K to reach its target, this will require that the sum of all the values selected
by the agents is at least K. All in all, the sum has to be exactly K. Note that
without the synchronization point, some agent Aj could wait for the 2ni to be
produced by Ai before making their initial choice.

Let us now formally describe the reduction and establish its correctness.
Without loss of generality we assume that for every i ∈ J1,mK, ni ≤ K, and we
set B = 2mK. The local arenas are defined by:

– AC = ({ci | i ∈ J0, 4K} , E) with E =
{
cj

wj−→ cj+1 | j ∈ J0, 3K
}
, and

w0 = K,w1 = −mB,w2 = mB,w3 = −2K.
– for every i ∈ J1,mK, Ai =

({
qij | j ∈ J0, 5K

}
, Ei

)
with :

Ei =
{
(qi0

wi
01−→ qi1), (q

i
1

wi
15−→ qi5)

}
Ei = ∪

{
(qi0

wi
02−→ qi2), (q

i
2

wi
23−→ qi3), (q

i
3

wi
34−→ qi4), (q

i
4

wi
45−→ qi5)

}
;

and wi
01 = wi

23 = B,wi
15 = wi

34 = −B,wi
02 = −ni and wi

45 = 2ni.

10 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

Since we consider ua-Reach, the only transfer group is T> that contains every
vertex of every agent. The initial and target states are S0 = (c0, q

1
0 , · · · qm0) and

Sf = (c4, q
1
5 , · · · , qm5).

We claim that some Cf ∈ Sf↑ is reachable from 〈S0,
−→
0 〉 by an asynchronous

run if and only if there exists I ⊆ J1,mK with
∑

i∈I ni = K.
As a first step, let us show that if an agent Ai takes an edge with cost −B

before AC reaches c2, then the controller cannot reach its target. The maximum
amount of energy that can be collected in the system before AC reaches c2 is
bounded by mB+K +

∑m
i=1 2ni. Assume an edge with weight −B is taken, the

total energy is now bounded by (m− 1)B+K +
∑m

i=1 2ni. Due to our choice of
B, this value is strictly less than mB and AC cannot take the edge to c2.

The previous reasoning implies that every available edge with weight +B
must be taken by the agents Ai before AC can reach c2. Following this observa-
tion, fix a run and assume that every agent took an edge with weight +B but did
not take its edge with weight −B yet; assume further that AC has not reached
c2 yet; finally, without loss of generality, assume that AC reached c1. For every
i ∈ J1,mK, agent Ai is thus either in qi1 or in qi3. Let H be defined as the set of
indices i such that Ai is in qi3.
Assume that D =

∑
i∈H ni > K, then the current total energy is mB+K−D <

mB, thus AC cannot reach c2 and will never reach its target. So D ≤ K. From
this point, as AC needs to traverse to c2 not to be blocked, we can assume it goes
immediately to c3. Agent AC and the agents Ai with i /∈ H will no longer gain
energy before reaching their target, so we can assume the agents in H act first.
They lose an amount of energy of |H|B and gain 2D. Thus, the total energy in
the system is (m − |H|)B + 2D + (K − D). Exactly (m − |H|)B + 2K energy
units are required for the remaining agents to reach their target. This is only
possible if D ≥ K. As we already showed that D ≤ K, this means that D = K.

This concludes the proof. ut

Note that the hardness proof of Theorem 3 uses acyclic arenas. Moreover,
given a transfer system where each local arena is acyclic, the reachability prob-
lems under each semantics is in NP. Indeed, the length of a path for each agent
from its initial vertex to a final vertex is bounded by the number of vertices.
To derive a non-deterministic polynomial time algorithm, one can thus guess for
each agent a linear length path, and then check whether they can be combined
into a complete run of the transfer system. The latter can be done in poly-
nomial time by checking that at every step the global energy exceeds the one
needed for the next transition. Therefore, for acyclic local arenas, ua-Reach is
NP-complete.

Towards a complexity upper-bound beyond the acyclic case, we observe that
thanks to Theorem 1, ua-Reach reduces in polynomial time to us-Reach. We
will state in Theorem 4 that the latter is solvable in polynomial space.

Corollary 1. ua-Reach is in PSPACE.

Reachability in multi-agent transfer systems (Extended Version) 11

4.2 Strongly and Weakly Synchronous Semantics

Theorem 4. uw-Reach is in PSPACE.

Proof. To prove membership in PSPACE, we show a small witness property.
Precisely, in the uw-semantics, there exist exponential bounds Bmax and Lmax

such that: if there is a run to the target global state, then there is one (1)
of length at most Lmax and (2) along which if the energy level of the agents
reach Bmax, then the energy requirements can be ignored for the rest of the run.
Further, both bounds are exponential in the size of the input transfer system.

Consider the instance TS = 〈{A1, . . . , An} , {T>}〉 of uw-Reach together
with initial and final states S0 and Sf . Denote by wmax the largest absolute
value among the weights of the edges in all Ai’s. Suppose agent Ak has Bmax =
n·|TS|n ·wmax energy units. It can transfer K = |TS|n ·wmax energy units to each
other agent, and still have energy level K. Now, focusing on states only, not on
energy vectors, the length of a cycle-free path in the transfer system is at most∏n

i=1 |Vi| ≤ |TS|n. With K energy units, each agent is hence able to take an
acyclic path to its target, losing at most wmax energy units at each step. Hence,
from a configuration storing Bmax energy units, the energy can be distributed
in such a way that each agent reaches its goal assuming it is reachable from its
current vertex.

When exploring runs with bounded energy levels, one thus only needs to
look for relatively short runs. The number of useful configurations is bounded
by Lmax =

∏n
i=1 |Vi| · (Bmax + 1), and each of these is visited at most once in a

useful run. Therefore, useful runs are then of length at most Lmax, a value that
is exponential in |TS|.

Let us thus first consider runs with energy levels bounded by Bmax. The
number of configurations such runs visit is bounded by

∏n
i=1 |Vi| · (Bmax + 1).

One can also notice that a run from S0 to Sf does not need to contain cycles.
Hence configurations need only be visited at most once. This induces a bound
on the length of relevant runs: Lmax =

∏n
i=1 |Vi| · (Bmax + 2) (notice here that∏n

i=1 |Vi| steps can be required to reach the target when energy level is above
Bmax).

Using this bound on the maximum length of runs to reach the goal, we can
design a non-deterministic algorithm that starts from the initial configuration,
and explores runs of length at most Lmax among configurations that store at
most Bmax energy. The algorithm returns yes if the final state Sf is reached,
and fails if the length of the run exceeds Lmax or if the current configuration is
a deadlock. It requires polynomial space to store a configuration and the step-
counter. Indeed, a configuration is represented by storing for each agent its vertex
and and its energy level. When energy levels are bounded by Bmax, the space
needed to store them is logarithmic in Bmax. Moreover, the length of runs can be
encoded by a counter taking values up to Lmax, which can be encoded in space
logarithmic in Lmax. Since both bound are exponential in A, polynomial space
in |TS| is sufficient. By Savitch’s theorem [22], this non-deterministic polynomial
space algorithm proves membership in PSPACE. ut

12 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

Theorem 5. us-Reach is PSPACE-hard.

Proof. To prove PSPACE-hardness, we reduce the reachability problem for 1-
safe Petri nets which is PSPACE-complete. More precisely, w.l.o.g., we consider
1-safe Petri nets in which no place is in the postset and the preset of the same
transition; reachability is known to be PSPACE-complete for this class [7].

A Petri net is a tuple N = 〈P, T ;F 〉 where P = {p1, . . . , pn} is a set of places,
T = {t1, . . . , tm} is a set of transitions, and F ⊆ P×T∪T×P is a flow relation. A
marking of a Petri net is a mapM : P → N that associates a number of tokens to
each place. The preset of a transition is the set of places •t = {p ∈ P | (p, t) ∈ F}
and the postset of t is the set of places t• = {p ∈ P | (t, p) ∈ F}. A transition is
firable from marking M if, for every place p ∈ •t, M(p) > 0. Firing a transition
t from marking M decrements M(p) by 1 for every place of p the preset, and
increments M(p′) for each p′ in its postset. We write M [t〉M ′ when M ′ is the
marking obtained by firing t from M . Given a Petri net N , one can define the
set of reachable markings Reach(N ,M0) that are reachable fromM0. The net N
is 1-safe if, for every marking M in Reach(N ,M0) and every place p, M(p) ≤ 1.
The reachability problem for Petri nets consists in deciding whether a given
input marking M belongs to Reach(N ,M0).

Let N = 〈P, T ;F 〉 be a 1-safe Petri net. Consider the transfer system with a
trivial transfer group TS = 〈{AC , A1, . . . , An} , {T>}〉 represented in Figures 4
and 5. This arena is composed of one control agent AC , and one agent Ai per
place pi ∈ P .

Q Qq1j · · · qjj qj+1
j · · · qmj

−nj

Fig. 4. Local arena of agent AC . Only vertices relevant for transition tj are depicted.

Formally, the control agent is AC = (VC , EC) with

VC = {Q} ∪
{
qj

′

j | j, j
′ ∈ J1,mK

}
;

EC =

{
qj

′

j

wj′
j−→ qj

′+1
j | j′ ∈ J1,m− 1K, j ∈ J1,mK

}

∪
{
Q

0−→ q1j , q
m
j

wm
j−→ Q | j ∈ J1,mK

}
and ∀j, wj

j = −n · j and all other weights are null.
Intuitively, the controller chooses to fire tj by moving to vertex qj and expects

to get enough energy in time. We will see that the only way for AC to pay nj
energy units at step j is if other agents have also chosen to fire tj .

Reachability in multi-agent transfer systems (Extended Version) 13

Q0 Q1

q00j,1· · ·q00j,j−1

q00j,j · · · q00j,m

+j

q01j,1 · · · q01j,j−1 q01j,j · · · q01j,m
+j

q10j,1· · ·q10j,j−1q10j,j· · ·q10j,m
+j

q11j,m

· · · q00j,j−1

q00j,j· · ·

q11j,1

+j

Fig. 5. Local arena of agent Ai. Only edges relevant for transition tj are depicted.

Then, for every i ∈ J1, nK, there is an agentAi = (Vi, Ei) with Vi = {Q0, Q1}∪{
qAB
j,j′ | j, j′ ∈ J1,mKA,B ∈ {0, 1}

}
, and

Ei =

{
qAB
j,j′−1

wAB
j,j′−→ qAB

j,j′ | j′ ∈ J2,mK, j ∈ J1,mK, A,B ∈ {0, 1}
}

∪
{
QA

wAB
j,1−→ qAB

j,1 , q
AB
j,m

0−→ QB | j ∈ J1,mK, A,B ∈ {0, 1}
}

and for every transition tj ∈ T , if pi ∈ •tj , then w00
jj = w01

jj = w11
jj = 0 and

w10
jj = j; else if pi ∈ t•j , then w00

jj = w10
jj = w11

jj = 0 and w01
jj = j; otherwise

w10
jj = w01

jj = 0 and w11
jj = w00

jj = j. All other weights are null. Intuitively, agent
Ai at Q0 represents place pi having no tokens and agent Ai at Q1 represents pi
having one token. Ai can provide for the j energy units needed by AC through
simulating the firing of tj only if Ai is on a path corresponding to the effect
of tj on pi: if pi loses one token (pi ∈ •tj), the only correct path is through
the 10-vertex; if pi gains one token (pi ∈ t•j), the only correct path is via the
01-vertex; otherwise tj has no effect on pi : the correct paths are via the 00- or
11-vertex depending on the current marking.

Obviously, if firing transition tj from the marking M leads to the marking
M ′, there is a run from C(M) to C(M’) : For all pi ∈ •tj , Ai follows the path
10, for all pi ∈ t•j , Ai follows the path 01 and each other agent Ai follows the
path M(pi)M(pi). Note that each agent Ai follows the path M(pi)M

′(pi). With
these choices, before states qjj each agent except AC gains j energy units. On
qjj they all transfer that amount to AC which can leave qjj with exactly enough
energy to pay the −nj.

Now suppose that there is a run ρ : C(M) a
TS C

′ with m+ 1 move transi-
tions. We show that there exists M ′ such that C ′ = C(M ′). If agent AC follows
states qj . Suppose agents Ai follow states qji , they will receive at most ji energy
units through the ji-th edge of their path. The amount of energy available to AC

before going through its j + 1-th edge is at most
∑

ji≤j ji because if ji > j this
energy has not been gained before the j + 1-th edge. The only way for

∑
ji≤j ji

to be greater than or equal to nj is if for all i, ji = j. Thus agents Ai follow

14 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

qj states. But because Ai must gain j energy units, it must follow a path that
represents a possible behavior of the firing of tj on place pi. Thus ρ is exactly
as described in the first part of this proof, tj is enabled by M and C ′ represents
the marking M ′ resulting from firing tj in M : C ′ = C(M ′).

Finally, this reduction is polynomial : |AC | = O(m(m + log(nm))) and
∀i, |Ai| = O(m(m+ logm)). |TS| = O(nm2 log(mn)). ut

Thanks to Theorem 2, we deduce:

Corollary 2. us-Reach and uw-Reach are PSPACE-complete.

5 Arbitrary transfer groups

5.1 Asynchronous semantics

Let us now consider the complexity of `a-Reach, i.e., reachability for transfer
systems with local transfer groups, and under asynchronous semantics. We show
below that this problem is PSPACE-complete. The PSPACE membership is shown
by exhibiting an algorithm that requires polynomial space to reach a target
configuration. The PSPACE-hardness is proved by a reduction from a reachability
problem for safe Petri nets. We give a construction that builds for each safe Petri
net, a transfer system of polynomial size w.r.t. the original net, and whose runs
simulate that net. We already mentioned that [7] proved PSPACE-completeness
of reachability for safe Petri nets. Later, [9] has showed that reachability is NP-
complete for free-choice safe Petri nets. However, the encoding shown below
applies to any 1-safe Petri net. Let us start with the PSPACE membership.

Theorem 6. `a-Reach is in PSPACE.

Proof. Consider TS = 〈{A1, . . . , An}, T 〉. Call emax the biggest weight on an edge
in TS and Smax the biggest size among sets Si. From each vertex of its graph,
an agent with Bmax = Smax · emax energy units does not need to receive energy
from an other agent to reach any other vertex of its graph. In the sequel, we
give an upper bound on the useful energy level of an agent, taking into account
that it may transfer energy to others to help them achieve their reachability
objective. We show that if TS is a positive instance of `a-Reach, then there
exists a witness execution ρ in which the energy of each agent is bounded by
Bmax(2n− 1).

Fix ρ ∈ Runsa(TS). We say that Ai helps Aj by e energy units along ρ
with 0 intermediary if Ai sends at least e energy units to Aj through a transfer
transition in ρ and the energy level of Aj is at least e right after the last transfer
transition involving this agent in ρ. We say that Ai helps Aj by e energy units
along ρ with k ≥ 1 intermediaries if Ai transfers at least e energy units to an
other agent Ap that helps Aj along ρ by e energy units with k−1 intermediaries.
If Ai helps Aj along ρ by e energy units with any number of intermediaries, we
say that Ai helps Aj by e energy units for short. This can be thought of as if Ai

has ultimately sent e energy units to Aj that it can keep for itself.

Reachability in multi-agent transfer systems (Extended Version) 15

We show by induction on k that if an agent starts ρ with (2k−1)Bmax energy
units, it may help up to k other agents by Bmax energy units and have at least
Bmax energy units after its last transfer transition. The case k = 0 is immediate.
Suppose the property holds until k ≥ 0. If agent Ai has (2k + 1)Bmax energy
units, it may try to meet an other agent Aj at cost at most Bmax leaving at
least 2kBmax energy units. If Ai sends (2k′ − 1)Bmax energy units to Aj for
some k′ ∈ J0, kK, then Aj may help up to k′ other agents by Bmax and Ai may
help up to k − k′ − 1 other agents by Bmax. Note that Ai helps all the up to k′
agents that Aj helps (with an additional intermediary) and because Aj has at
least Bmax energy units after its last transfer transition, Ai also helps Aj which
adds up to a total of k agents helped. As a consequence, an agent never needs
to have more than (2n − 1)Bmax energy units since helping every other agents
by Bmax while still having that much afterwards is enough for TS to reach the
final state.

The same way as we showed it in the proof of Theorem 4, we have now an
exponential bound in O(n|TS|2|TS|) on useful energy levels which results in a
polynomial bound in O(|TS| log(n|TS|)) on the space needed to store a useful
configuration and an exponential bound Lmax ∈ O(n|TS|2|TS|) on the length of
useful runs. In the end, there exists an NPSPACE algorithm that explores runs
of size at most Lmax and either fails if the final state Sf is not reached in Lmax

steps (the current length of the run can be stored in space O(|TS| log(n|TS|)))
or if a deadlock is reached, and succeeds otherwise. By Savitch’s theorem, we
get that `a-Reach is in PSPACE. ut

Theorem 7. `a-Reach is PSPACE-hard.

Proof (sketch). We encode a reachability problem for safe Petri nets in a `a
-Reach problem with a transfer system whose size is linear in the size of the
considered net. LetN = (P, T ;F) be a safe Petri net with initial markingM0. We
build a transfer system composed of n+1 agents, TSN = 〈{AC , A1, . . . , An}, T 〉
simulating the behavior of N . We do not give the whole construction here,
and refer to [2] for details. The first agent AC is a controller that initiates the
simulation of a transition firing. Agents of the form Ai encode the contents of
place pi through their states, and simulate the effect of a transition firing via
sequences of moves. We distinguish in particular two states Ai,0 and Ai,1, used
to encode M(pi) = 0 and M(pi) = 1 in order to represent the marking M . Then
we set an ordering on places, and ensure that when the controller agent chooses
a particular transition t, all place agents choose the transition they simulate, but
have to wait for energy from their predecessor to progress in this simulation. If
two agents choose different transitions, the system deadlocks. Upon agreement
on the chosen transition to simulate, the last agent An eventually sends back
energy to the controller, acknowledging the fact that all places are engaged in the
simulation of the same transition from the same marking. The controller then
launches another round among place agents (still by transferring energy) who
successively update their state to encode the effect of t on their place contents
before acknowledging all changes to the controller. For instance, if transition t

16 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

consumes a token from place pi and M(pi) = 1, then agent Ai will start its
interactions from state Ai,1 and will end the simulation of t’s firing in state Ai,0.
If a transition t is chosen, pi is in the preset of t, but Ai started from state Ai,0,
then choosing to simulate t will send Ai to a deadlock state, and will prevent
reaching global states that encode markings. During this simulation process, if
a place agent does not transfer energy to its successor and moves to its next
state, then the system necessarily deadlocks or can return to the situation where
the transfer was missed. When an agent keeps energy for its future moves, it
can only repeat the choice of a new transition to simulate, hence canceling its
previous choice. The only way to simulate properly a Petri net transition is if all
agents choose the same transition and transfer their energy to their successor.
Other choices lead either to deadlocks or livelocks in configurations that do not
encode markings.

Configurations of TSN of the form 〈(qC1 , A1,b1 , ·, An,bn),
−→
0 〉 will be called

stable configurations (and other configurations unstable). Stable configurations
represent an encoding of a marking of N . A first step in the proof is to show
that, for a pair of markings M,M ′ of N , such that M [t〉M ′, there exists a run
from C(M) = 〈(qC1 , A1,M(p1), . . . , An,M(pn)),

−→
0 〉 to C(M ′) in TSN . The shape

of such runs is depicted in Figure 6. In this figure, agents steps are organized
as local sequences, red dashed arrows depict energy transfers, and vertices that
belong to the same transfer group have identical shape and color. This first part
of the proof shows that a transfer system can simulate a safe Petri net, as for
M [t〉M ′, there exists a "canonical" run ρM [t〉M ′ from stable configuration C(M)
to stable configuration C(M ′) that does not visit any other stable configuration.

It then remains to show that TSN does not allow the reachability of stable
configurations that are not encodings of reachable markings. To this extent, we
look at the transition system composed of possible configurations and moves of
the transfer system and highlight its properties. One can show that the runs
encoding firing of a transition t of a safe net follow a particular pattern: Agents
choose their transition and guess their predecessor’s bit. When all agents agree on
a common transition, one unit of energy flows from Ac to A1, A2 . . . An and then
back to Ac. A second round then starts, with two units of energy transferred
successively from Ac to A1, A2 . . . An. If two agents did incompatible choices
of simulated transition or control bit, then a deadlock (without reaching any
stable configuration) is unavoidable. Similarly, if an agent does not transfer all
its energy to its successor , then the system either deadlocks, or enters an infinite
sequence of moves that can be only exited by sending back the faulty agent to
the state from which the wrong choice was performed, still without visiting a
stable configuration.

We can hence conclude that a markingM of the safe Petri net N is reachable
from marking M0 if and only if the stable configuration C(M) is reachable from
the configuration C(M0) in TSN . Hence, `a-Reach is PSPACE-hard. ut

5.2 Strongly synchronous semantics

Theorem 8. `s-Reach is in EXPSPACE.

Reachability in multi-agent transfer systems (Extended Version) 17

qc1 qc2,t qc3,t qc4,t qc5,t qc6,t qc1
+1 -1 +2 -2

A1,1 q11,1,t q12,1,t q13,1,t q14,1,t q15,1,t q16,1,t A1,0
-1 +1 -2 +2

1 2

A2,0 q21,0,t,1 q22,0,t,1 q23,0,t,1 q24,0,t,1 q25,0,t,1 q26,0,t,1 A2,1
-1 +1 -2 +2

1 2

1 2

An,bn

An−1,x

q31,bn,t,x q32,bn,t,x q33,bn,t,x q34,bn,t,x q35,bn,t,x q36,bn,t,x An,b′n
-1 +1 -2 +2

1 2

2
2

Fig. 6. Simulating a transition t moving a token from p1 to p2

Proof. The exponential space algorithm we exhibit to show membership in EX-
PSPACE involves the construction of a VASS V of exponential size yet poly-
nomial dimension. Rackoff’s backward algorithm for VASS coverability requires
2O(d) · log |V| space [16] where d is the dimension of V. This results in an overall
exponential space algorithm for `s-Reach.

The above-mentioned VASS V is built as follows. Given an instance TS =
〈{A1, · · · , An}, T 〉 with ∀i, Ai = (Vi, Ei), we define V = 〈S, δ〉 such that:

– S =
∏n

i=1 Vi

– ∀(q1
w1−→ q′1, . . . , qn

wn−→ q′n) ∈
∏n

i=1Ei, (q1, . . . , qn)
w1,...,wn−→ (q′1, . . . , q

′
n) ∈ δ

– ∀−→q = (q1, . . . , qn) ∈ S,∀qi 6= qj ,

[
∃T ∈ T | qi, qj ∈ T =⇒ −→q

−→wij−→ −→q ∈ δ
]

where −→wij is the vector with only zeros except +1 at index i and -1 at index j.
With this construction, whether there exists a run ρTS : 〈S,−→e 〉 s

TS

〈
S′,
−→
e′
〉

is equivalent to whether there exists a run ρV : 〈S,−→e 〉 V
〈
S′,
−→
e′
〉
.

We show the direct implication by induction on the length of ρTS:

– If ρTS is empty, 〈S,−→e 〉 =
〈
S′,
−→
e′
〉
and the property holds.

– Let ρTS be of length l+1. Let
〈
S−1,

−→
e−1
〉
be the penultimate configuration

of ρA. By induction, there exists ρV : 〈S,−→e 〉 V
〈
S−1,

−→
e−1
〉
. If the last

transition of ρTS is a move transition, for all i there is a transition q−1i
wi−→

q′i ∈ Ei such that all energy levels e′i = e−1i + wi are non-negative. ρV

18 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

may reach
〈
S′,
−→
e′
〉

with the transition S−1
w1,...,wn−→ S′ induced by these

transitions. Otherwise, there are some i, j ∈ J1, nK and some T ∈ T with
q′i, q

′
j ∈ T , e−1i + e−1j = e′i + e′j and ∀k /∈ {i, j}, e−1k = e′k. The transfer

from coordinate i to coordinate j may be decomposed using the transition

S′
−→wij−→ S′ since q′i and q′j share the same group T . In all cases,

〈
S′,
−→
e′
〉
is

reachable.

Conversely, by induction on the length of ρV :

– The case of ρV empty is immediate.
– Let ρV be of length l+1. Let

〈
S−1,

−→
e−1
〉
be the penultimate configuration of

ρV . By induction, there exists ρTS : 〈S,−→e 〉 s
TS

〈
S−1,

−→
e−1
〉
. The last transi-

tion of ρV has two possible forms. Either there is (q1
w1−→ q′1, . . . , qn

wn−→ q′n) ∈∏n
i=1Ei such that this last transition is (q1, . . . , qn)

w1,...,wn−→ (q′1, . . . , q
′
n), in

which case ρTS can be extended by the move transition induced by these
edges to reach S′. Note that because the coordinates are maintained non-
negative in V, so will the energy levels. Or, there are some coordinates

i, j ∈ J1, nK such that the last transition of ρV is S′
−→wij−→ S′ with some

transfer group T ∈ T such that q′i, q′j ∈ T . In that case, a transfer transition

from ρA that sends 1 energy unit from Ai to Aj reaches
〈
S′,
−→
e′
〉
.

According to the previous result, we conclude that if an instance is positive
for `s-Reach then its joined instance for VASS-cover is also positive.
Furthermore, V is of size O(|TS|2n) since there are O(|TS|n) states, O(n2)
loops on each state and O((|TS|n)2) other transitions.

ut

For the complexity lower-bound, recall that `a-Reach is PSPACE-hard (The-
orem 7) and conclude with Theorem 1 that:

Corollary 3. `s-Reach is PSPACE-hard.

5.3 Weakly synchronous semantics

Perhaps surprisingly, the relaxation of agents synchronization from strong to
weak synchronous semantics, i.e. the fact that agents with no enabled edges
may not move simulaneously with other agents, leads to undecidability. The
main reason is the following. Both the asynchronous and (strongly) synchronous
semantics enjoy a monotonicity property: higher energy levels can only enable
more transitions and allow to reach more configurations. This monotonicity does
not hold under the w-semantics. Indeed, it can be profitable for an agent to reach
a vertex with a low energy level, so that it is allowed to “wait” for other agents to
move and later gain energy through a transfer. Intuitively, this behaviour allows
one to test whether an agent has energy left, thus encoding a zero test.

Theorem 9. `w-Reach is undecidable.

Reachability in multi-agent transfer systems (Extended Version) 19

Proof. We give a reduction from the termination problem of Minsky machines,
which is known to be undecidable [19]. Let us start with a quick recall on Minsky
machines. A Minsky machine M is described by two counters x and y, as well
as a sequence of commands l0, . . . , lm where l0 is the starting command, lm ends
the run of the system, and every command l0 to lm−1 is of one of the following
three types:

– increment counter c ∈ {x, y}, move to the next command;
– decrement counter c ∈ {x, y}, move to the next command3;
– if counter c ∈ {x, y} is equal to 0, move to command lk, otherwise move to

command lj .

In summary, the machine goes through a list of commands starting with l0,
incrementing, decrementing counters, or testing whether a counter is equal to 0
in order to select the new command to jump to—and it terminates whenever it
reaches lm. The termination problem for Minsky machines consists in deciding,
given a machineM, whetherM terminates.

In our reduction, we use two agents with local arenas Ax and Ay, storing as
energy level the current value of each counter, one control agent AC that encodes
the control flow of the Minsky machine, and one additional agent Ai for each
command li to simulate the effect of li when it is activated by AC . Sink vertices
Bad are used to punish agents that reach a vertex with an energy level that
differs from the one that is expected in the Minsky machine simulation.

We now detail how to encode a decrement: assume command li decrements
counter z ∈ {x, y}. Only three agents take part in the simulation of li: the control
agent AC , agent Az associated to counter z and agent Ai dedicated to li.

li0 li1 li2 li3 li4 li5 li6 li7 li8

qi0 qi1 qi2 qi3 qi4

qz0Az

Bad

li+1
0

+1 -2 +3

-1 +1 -3 +4

-4AC

Ai

Fig. 7. Encoding a decrement. To the exception of circles, states with the same shape
belong to the same transfer group.

3 Note that the machine must be designed so that decrement can only occur when the
counter value is positive.

20 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

Formally, we define the transfer system associated with command line li as
TSi = 〈{Az, AC , Ai}, Ti〉, depicted in Figure 7, with:

– Az = ({qz0}, ∅);

– Ai = (Vi, Ei), where Vi = {qij | j = 0 . . . 4}; Ei = {qij
wi

j−→ qik | j ∈ J0, 4K∧(k ≡
j + 1 (mod 5))}; with wi

0 = −1, wi
1 = 1, wi

2 = −3, wi
3 = 4 and wi

4 = 0.
– AC = (V C

i , E
C
i), where V C

i = {lij | j ∈ J0, 8K} ∪ {Bad, li+1
0 } and EC

i =

{lij
wi

−→ lir | j = 0 . . . 7 ∧ r = j + 1} ∪ {li8
w8

−→ li+1
0 , li4

0−→ Bad, li8
0−→ Bad};

and w0 = 1, w4 = −2, w5 = 3, w8 = −4 and other weights are null.
– Ti contains the groups {li1, qi0}, {qz0 , qi1}, {li4, li6, qi2} and {li8, qi4}.

Recall that this addresses a single command line li. To encode a complete
Minsky machineM with k instructions, we assemble the arenas for all command
lines into the transfer system TSM = 〈(AC , Ax, Ay, A1, . . . Ak),

⋃
Ti〉 AC , in

which Ax and Ay are the unions of sets of vertices and edges of the arenas of
every command line. In particular, the vertex li+1

0 is shared with the local arena
associated with the command line li+1.

Let us show that if the agents AC , Ai and Az start in 〈(li0, qi0, qz0), (0, 0, n)〉
with n > 0, then the only way to avoid Bad leads them to the configuration
〈(li+1

0 , qi0, q
z
0), (0, 0, n − 1)〉. Hence, executing the command line li will indeed

decrement the energy of Az by 1.
In the first step, only AC can move, reaching li1 with 1 unit of energy. There

it can either transfer this energy to Ai or keep it. If it chooses not to transfer,
it remains the only agent able to move, and when reaching li4, it will have 1
unit of energy, forcing it to go to Bad. Assume thus that AC tranfers its energy
unit to Ai. Both then move synchronously to li2 and qi1. In qi1, Ai can interact
with Az. Let m be the energy level of of Ai at that point. Agents AC and Ai

then reach li3 and qi2 with energy levels 0 and m + 1. If m + 1 ≥ 3, then both
agents move to li4 and qi3 and in the next step, AC is forced to go to Bad. In
order for AC to avoid its Bad vertex, it must be the case that m + 1 < 3. In
this case, AC progresses to li4 while Ai remains in qi2, because the only available
edge consumes 3 units of energy. With this move, AC can receive energy from
Ai, as their current vertices belong to the same transfer group. Now AC needs 2
energy units to avoid going to Bad, which requires m+1 ≥ 2. Hence m+1 = 2
which implies that during their interaction, Az transferred 1 energy unit to Ai,
leaving Az with n − 1 units of energy. After transferring 2 energy units to AC ,
Ai remains stuck in qi2 while AC progresses to li5 and then li6 with 3 energy units.
Again, AC can choose to move on its own without transferring energy to Ai, but
it will eventually reach vertex li8, and lacking 4 energy units will be forced to go
to Bad. If AC transfers 3 energy units to Ai they both move to li8 and qi4 where
Ai can then transfer to AC the 4 energy units required to avoid Bad. This then
leads to a configuration where AC is in state li+1

0 with no energy left, Ai is back
in vertex qi0 also with no energy left, and Az is in vertex qz0 with an energy level
n − 1. In this construction, transferring other quantities of energy always leads
to deadlock configurations.

Reachability in multi-agent transfer systems (Extended Version) 21

The encoding of the increment is similar. The zero test however is even more
involved, allowing the agents to remain stuck in some vertices and wait for the
other agents iff the counter value is 0. The constructions for these two operations
are provided in details in [2]. Altogether, the three constructions ensure that
in order to avoid the Bad vertices, the agents must correctly implement the
command of the Minsky machine.

To complete the reduction, the reachability objective for the transfer system
is defined as follows. The last command lm of the Minsky machine, is represented
by a single vertex lm0 which is the target vertex of the control agent. The targets
of other agents are the set of vertices lm0 , qi0 for i ∈ J0,m−1K and qz0 for z ∈ {x, y}.
As the agents must avoid the Bad vertices, the above constructions ensure that
the target state is covered in the transfer system if and only if the Minsky
machine terminates. ut

6 Conclusion

This paper introduced and studied a cooperative game model, in which agents
move on local weighted arenas, and can help each other by tranferring energy
to their peers. We considered a global reachability question, i.e., whether it is
possible to reach a system configuration where each agent is in its goal ver-
tex, while always keeping all energy levels non-negative. While transfer systems
can be easily encoded as vector addition systems with states, and our reacha-
bility problems as a coverability question, we showed that the energy transfer
feature induces a complexity drop, with complexities ranging from PSPACE to
EXPSPACE. For asynchronous and strongly synchronous semantics, we exploited
a form of monotonicity and a small witness property. However, monotonicity does
not hold under weak synchronous semantics, leading to undecidability.

An obvious future work is to close the complexity gaps for ua-Reach and
`s-Reach. The similarities between transfer systems and subclasses of VASS, in
particular 1-dim VASS for ua-Reach might help solving this issue. Considering
extensions of transfer systems is another interesting research direction, for in-
stance with features that have been considered for Petri nets while maintaining
decidability such as transfers or resets. Finally, beyond the purely cooperative
question we tackled here, it would also be interesting to consider alternative
problems in which the agents have conflicting objectives.

References

1. Toshiro Araki and Tadao Kasami. Some decision problems related to the reacha-
bility problem for Petri nets. Theoretical Computer Science, 3(1):85–104, 1976.

2. Nathalie Bertrand, Loïc Hélouët, Engel Lefaucheux, and Luca Paparazzo. Reach-
ability in multi-agent transfer systems (extended version). Technical report, HAL
Inria https://inria.hal.science/hal-05366409, 2025.

https://inria.hal.science/hal-05366409

22 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

3. Tomás Brázdil, Petr Jancar, and Antonín Kucera. Reachability games on extended
vector addition systems with states. In Proceedings of the 37th International Col-
loquium on Automata, Languages and Programming (ICALP’10), volume 6199 of
Lecture Notes in Computer Science, pages 478–489. Springer, 2010.

4. Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and
Marie van den Bogaard. The complexity of subgame perfect equilibria in quan-
titative reachability games. In Proceedings of the 30th International Conference
on Concurrency Theory (CONCUR’19), volume 140 of LIPIcs, pages 13:1–13:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

5. Thomas Brihaye, Amit Kumar Dhar, Gilles Geeraerts, Axel Haddad, and Ben-
jamin Monmege. Efficient energy distribution in a smart grid using multi-player
games. In Proceedings of Cassting Workshop on Games for the Synthesis of Com-
plex Systems and 3rd International Workshop on Synthesis of Complex Parameters
(Cassting/SynCoP’16), volume 220 of EPTCS, pages 1–12, 2016.

6. Nils Bulling and Valentin Goranko. Combining quantitative and qualitative rea-
soning in concurrent multi-player games. Autonomous Agents and Multi-Agent
Systems, 36(1):2, 2022.

7. Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe
nets. Theorerical Computer Science, 147(1&2):117–136, 1995.

8. Gianfranco Ciardo. Petri nets with marking-dependent arc cardinality: Properties
and analysis. In Proceedings of the 15th International Conference on Application
and Theory of Petri Nets 1994 (PetriNets’94), volume 815 of Lecture Notes in
Computer Science, pages 179–198. Springer, 1994.

9. Javier Esparza. Reachability in live and safe free-choice Petri nets is NP-complete.
Theoretical Computer Science, 198(1-2):211–224, 1998.

10. Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games in multi-
weighted automata. In Proceedings of the 8th International Colloquium on Theoret-
ical Aspects of Computing (ICTAC’11), volume 6916 of Lecture Notes in Computer
Science, pages 95–115. Springer, 2011.

11. Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg,
Guni Sharon, Nathan R. Sturtevant, Glenn Wagner, and Pavel Surynek. Search-
based optimal solvers for the multi-agent pathfinding problem: Summary and chal-
lenges. In Proceedings of the 10th International Symposium on Combinatorial
Search (SOCS’17), pages 29–37. AAAI Press, 2017.

12. Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, Thomas Steeples,
and Michael J. Wooldridge. Equilibria for games with combined qualitative and
quantitative objectives. Acta Informatica, 58(6):585–610, 2021.

13. Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reacha-
bility in succinct and parametric one-counter automata. In Proceeding of the 20th
International Conference on Concurrency Theory (CONCUR’09), volume 5710 of
Lecture Notes in Computer Science, pages 369–383. Springer, 2009.

14. John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science, 8:135–159,
1979.

15. Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer, 1972.

16. Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and
Karol Wegrzycki. Coverability in VASS revisited: Improving Rackoff’s bound to
obtain conditional optimality. In Proceeding of the 50th International Colloquium
on Automata, Languages, and Programming (ICALP’23), volume 261 of LIPIcs,
pages 131:1–131:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

Reachability in multi-agent transfer systems (Extended Version) 23

17. Jérôme Leroux. Petri net reachability problem (invited talk). In Proceedings of
the 44th International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS’19), volume 138 of LIPIcs, pages 5:1–5:3. Schloss Dagstuhl - Leibniz-
Zentrum f"ur Informatik, 2019.

18. Richard Lipton. The reachability problem requires exponential space. Technical
report, Yale University, 1976.

19. Marvin L. Minsky. Computation: Finite and infinite machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

20. John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49, 1950.

21. Charles Rackoff. The covering and boundedness problems for vector addition sys-
tems. Theoretical Computer Science, 6:223–231, 1978.

22. Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

23. Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines
and reset Petri nets. In Proceedings of the 35th International Symposium on Mathe-
matical Foundations of Computer Science 2010 (MFCS’10), volume 6281 of Lecture
Notes in Computer Science, pages 616–628. Springer, 2010.

24 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

This appendix presents full proofs, that were ommitted in the core of the
paper due to space constraints.

A Missing proofs for Section 5.1

Theorem 7 `a-Reach is PSPACE-hard.

Proof. We encode a reachability problem for safe Petri nets as an `a-Reach
problem in a transfer system whose size is linear in the size of the considered
net. Before formalizing this encoding, we can give the general principles of the
proof. For a safe Petri net with n places {p1, . . . , pn} and q transitions, the
transfer system encoding a reachability question is composed of n + 1 agents:
{AC} ∪ {Ai, | pi ∈ P}. The first agent AC is a controller that initiates the simu-
lation of a transitions’s firing, and agents of the form Ai encode the contents of
place pi through their states, and simulate the effect of a transition’s firing. We
distinguish in particular two states, used to encode m(pi) = 0 and m(pi) = 1.
Then we set an ordering on places, and ensure that when the controller agent
chooses a particular transition t, all place agents choose the transition they sim-
ulate, but have to wait for energy from their predecessor to progress in this sim-
ulation. If two agents choose different transitions, the system deadlocks. Upon
agreement on the choosen transition to simulate, the last agent An eventually
sends back energy to the controller, acknowledging the fact that all places com-
mitted to the simulation of the same transition from the same marking. The
controller then launches another round among place agents (still by transferring
energy) who successively update their state to encode the effect of t on their
place contents before acknowledging all changes to the controller. For instance,
if transition t consumes a token from place pi and m(pi) = 1, then agent Ai

will start its interactions from state Ai,1 and will end the simulation of t’s firing
in state Ai,0. If a transition t is chosen, pi is in the preset of t, but Ai started
from state Ai,0, then choosing to simulate t will send Ai to a deadlock state, and
will prevent reaching global states that encode markings. During this transition
simulation process, if a place agent does not transfer energy to its successor and
moves to its next state, then the system necessarily deadlocks or can return to
the situation where the transfer was missed. When an agent keeps energy for
his future moves, it can only repeat the choice of a new transition to simulate,
hence canceling its previous choice. The only way to simulate properly a Petri
net transition is if all agents choose the same transition and transfer their en-
ergy to their successor. Other choices lead either to deadlocks or livelocks in
configurations that do not encode markings.

Let us now formalize the encoding. Let N = (P, T, F,m0) be a safe Petri net,
were P = {p1, . . . , pn} is the set of places, T = {t1, . . . , tq} the set of transitions,
F ⊆ T × P ∪ P × P the flow relation and m0 : P → {0, 1} be a marking. We
call the preset of a transition t the set of places {p ∈ P | (p, t) ∈ F} and the
postset of a transition t the set of places {p ∈ P | (t, p) ∈ F}. A marking in a
map m : P → {0, 1} depicting a number of tokens in each place. A transition

Reachability in multi-agent transfer systems (Extended Version) 25

is firable from m if every place p in its preset is marked, i.e. m(p) = 1. Firing
a transition t from m removes all tokens from the preset of tand puts a token
in each place of the postset of t. We will say that a marking m is reachable by
N from a marking m0 if there exists a sequence of transitions firing starting
from m0 leading to m. Reachability for safe Petri nets is a PSPACE complete
problem [7].

We will now build a transfer system TSN = (AC , Ap1
, . . . Apn

, T) simulating
the behavior ofN . We first detail the construction of the local arena for controller
agent AC . It is composed of a set of states

SC = {qC1 } ∪ {qC2,t,bc , q
C
3,t,bc , q

C
4,t,bc , q

C
5,t,bc , q

C
6,t,bc | bc ∈ {0, 1}, t ∈ T}

The control bit bc in states of the form qCk,t,bc is a guess of making m(pn), that
has to be correct to end successfully the simulation of t. Transitions of AC are
of the form

TC = {(qC1 ,+1, qC2,t), (q
C
2,t, 0, q

C
3,t), (q

C
3,t,−1, qC4,t), (qC4,t,+2, qC5,t), (q

C
5,t, 0, q

C
6,t), (q

C
6,t,−2, qC1) | t ∈ T}

. Roughly speaking, this set of transitions corresponds to two loops of weight 0
around state qC1 per transition of N (see Figure 8 for an illustration of one loop).

To simulate the contents of place p1, we build an arena Ap1
= (V1, v

1
0 , E1, w1)

where V1 is a set of states of the form

V1 = {A1,0, A1,1, D1}∪{q11,b1,t, q
1
2,b1,t, q

1
3,b1,t, q

1
4,b1,t, q

1
5,b1,t, q

1
6,b1,t | t ∈ T, b1 ∈ {0, 1}}

The set of edges of the arena depict, for each transition t of the net, the effect
of the firing of a transition on a place, via sequences of transitions from A1,b1 to
A1,b′1

of the form :

– Type 00 ρ1,A1,0 = A1,0
0−→ q11,0,t

−1−→ q12,0,t
+1−→ q13,0,t

0−→ q14,0,t
−2−→ q15,0,t

+2−→
q16,0,t

0−→ A1,0 when p1 is not in the preset nor in the postset of t. Intuitively,
place p1 is not used by transition t so its contents is not changed.

– Type 11 A similar sequence ρ1,A1,1 is also part of transitions of Ap1
:

ρ1,A1,1 = A1,1
0−→ q11,1,t

−1−→ q12,1,t
+1−→ q13,1,t

0−→ q14,1,t
−2−→ q15,1,t

+2−→
q16,0,t

0−→ A1,1. This type of sequence encodes situation where m(p1) = 1
and either p1 is both in the postset and in the preset of t ore in none of
them.

– Type 01 Sequences of transitions from A1,0 to A1,1 of the form :

ρ2,A1 = A1,0
0−→ q11,0,t

−1−→ q12,0,t
+1−→ q13,0,t

0−→ q14,0,t
−2−→ q15,0,t

+2−→ q16,0,t
0−→

A1,1 when p1 is not in the preset but is in the postset of t. These sequences
represent the creation of one token in place p1

– Type 10 Sequences of transitions from A1,1 to A1,0 of the form :

ρ3,A1 = A1,1
0−→ q11,1,t

−1−→ q12,1,t
+1−→ q13,1,t

0−→ q14,1,t
−2−→ q15,1,t

+2−→ q16,1,t
0−→

A1,0 when p1 is in the preset but not in the postset of t. These sequences
represent the consumption of one token in place p1 by transition t when
m(p1) = 1. Notice that sequences of type 11 and of type 10 are exclusive,
and depend of the flow relation of the simulated net.

26 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

– Type 0bad sequence of the form ρ4,A1 = A1,0
0−→ q11,0,t

−1−→ q12,0,t
+1−→

q13,0,t
0−→ q14,0,t

−2−→ q15,0,t
+2−→ q16,0,t

0−→ D1 when p1 is in the preset of t.
This situation corresponds to the wrong choice of agent A1 to simulate tran-
sition t when starting from a local state encoding m(p) = 0. Transition of
type 01 and 0bad are exclusive in our construction.

Along these paths (as illustrated in Figure 8) a state of the form q1i,b1,t rep-
resents the ith step of path starting from state A1,b1 representing place p1 with
content m(p1) = b1 ∈ {0, 1}. Arena Ap1 has |T | · 12 + 2 states, and 14 · |T |
transitions .

Then, for each agentAp2 , . . . , Apn , we build similar sequences of type 00,01,10,11,0bad
as for Ap1

, but these sequences are duplicated to differentiate situation where
agent k− 1 was in a state representing place pk holding a token or not. For each
agent Apk

, we have a set of vertices Vk = {Ak,0, Ak,1, Dk} ∪ {qki,bk,t,0, q
k
i,bk,t,1

|
bk ∈ {0, 1}, i ∈ 1..6, t ∈ T}. Intuitively, a state of the form Ak,bk represents
marking of place pk with m(pk) = bk, and states of the form qki,bk,t,b′k

represent
steps of a simulation of the effects of transition t on place pk. Bit bk is the mark-
ing of place bk and bit b′k a guess of the marking of the preceding place. This
guarantees that no agent can simulate a transition twice, and hence forces all
agents to perform their simulation from a single marking. We will see later that
choosing to simulate the wrong transition of a transition with the wrong prede-
cessor bit leads to deadlocks. As for Ap1

, the edges of the arena Apk
are defined

trough sequences of transitions. However, the extra bit b′k leads to distinguish-
ing two sequences of transitions for each situation identified above (sequences of
transitions of types 00, 11, 01, 10, 0bad) for every state Ak,bk . For instance, we
have two sequences of type 00, namely

ρ1,Ak = Ak,0
0−→ qk1,0,t,0

−1−→ qk2,0,t,0
+1−→ qk3,0,t,0

0−→ qk4,0,t,0
−2−→ qk5,0,t,0

+2−→ qk6,0,t,0
0−→ Ak,0

and

ρ′1,Ak = Ak,0
0−→ qk1,0,t,1

−1−→ qk2,0,t,1
+1−→ qk3,0,t,1

0−→ qk4,0,t,1
−2−→ qk5,0,t,1

+2−→ qk6,0,t,1
0−→ Ak,0

when pk is not in the preset nor in the postset of t. Sequences ρ2,Ak, ρ3,Ak, ρ4,Ak

and ρ′2,Ak, ρ
′
3,Ak, ρ

′
4,Ak are built similarly. The number of states and transitions

in agent Apk
is linear in the number of transitions of N .

Last, the transfer groups are defined as sets containing Tc,Ap1
= {{qc2,t,bc , q

1
1,0,t, q

1
1,1,t} |

t ∈ T, bc ∈ {0, 1}} to "synchronize" the choice of a transition of the controller and
the choice of the same transition by agentA1. TAp1 ,Ap2

= {{q13,b,t, q21,b′=0,t,b, q
2
1,b′=1,t,b} |

b ∈ {0, 1}, t ∈ T} to "synchronize" the choice of a transition by agent Ap1

holding bit b and choice of the same transition by agent Ap2 . TApk
,Apk+1

=

{{qk3,b,t, q
k+1
1,b′=0,t,b, q

2
1,b′=1,t,b} | b ∈ {0, 1}, t ∈ T} to "synchronize" the choice of a

transition by agent Apk
holding bit b and choice of the same transition by agent

Apk+1
. TApn ,AC

= {{qk3,bc,t,b′ , q
C
3,bc,t
} | b, b′ ∈ {0, 1}, t ∈ T} ∪ {{qk6,b,t,b′ , qC6,t} |

b, b′ ∈ {0, 1}, t ∈ T} to acknowledge choice of t and contents of place pn by AC .

Reachability in multi-agent transfer systems (Extended Version) 27

qc1 qc2,t,0

qc2,t,1

qc2,t′,0

qc2,t′,1

qc3,t,0 qc4,t,0 qc5,t,0 qc6,t,0
+1

+1

+1

+1

-1 +2

-2

Ac

A1,1 q11,1,t q12,1,t q13,1,t q14,1,t q15,1,t q16,1,t A1,0
-1 +1 -2 +2

A1

A2,0 q21,0,t,0 q22,0,t,0 q23,0,t,0 q24,0,t,0 q25,0,t,0 q26,0,t,0 A2,1
-1 +1 -2 +2

q21,0,t,1 q22,0,t,1 q23,0,t,1 q24,0,t,1 q25,0,t,1 q26,0,t,1

q21,0,t′,0

q21,0,t′,1

-1 +1 -2 +2

A2

A3,1 q31,1,t,0 q32,1,t,0 q33,1,t,0 q34,1,t,0 q35,1,t,0 q36,1,t,0 A3,1
-1 +1 -2 +2

q31,1,t,1 q32,1,t,1 q33,1,t,1 q34,1,t,1 q35,1,t,1 q36,1,t,1
-1 +1 -2 +2

A3

Fig. 8. Simulating a safe Petri net with a transfer system. The simulated net contains
3 places {p1, p2, p3} and two transitions {t, t′}. Transition t consumes a token from
p1, p3 and produces a token in p2, p3. Most of the part of transfer system for transition
t′ is not represented for simplicity, hence specifying transition t′ is irrelevant.

28 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

Configurations of the form 〈(qC1 , A1,b1 , ·, An,bn), 0
n+1〉 will be called stable

configurations (and other configurations unstable). Stable configurations repre-
sent an encoding of a marking of N .

Lemma 1. Let m be a marking of N , and let m[t〉m′. Then the configuration
Cm′ = 〈(qC1 , A1,m′(p1), ·, An,m′(pn)), 0

n+1〉 is reachable in TSN from
Cm = 〈(qC1 , A1,m(p1), ·, An,m(pn)), 0

n+1〉.

Proof. Consider a subset of the system represented in Figure 6, and consider
Cm = 〈(qC1 , A1,b1=1, A2,b2=0, . . . , An,bn), 0

n+1) as the current configuration. We
will show how to simulate the execution of a transition t moving a token from
place p1 to place p2. In Cm, all agents have an energy level of 0. Hence, agent
AC starts moving, and chooses transition t, i.e. moves to vertex qc2,t,bc=m(pn)

and
increases its energy level to 1. Then, agents Ap1

, . . . Apn
can move to vertices

q11,t, q
2
0,t, . . . q

n
bn=m(pn),t

, but are blocked in these vertices as their energy level is
still 0. At this point, a transfer of one unit of energy can occur between AC and
Ap1 allowing Ap1 to move to vertex q12,1,t and immediately after to q13,1,t, gaining
one unit of energy. All other agents still have an energy level of 0. Ap2

can move
to vertex q21,0,t,1. Then, Ap1

can transfer 1 unit of energy to Ap2
, who can move

to vertex q22,0,t,1 and immediately after to q23,0,t,1, get one unit of energy (again
all other agents have an energy level of 0). Repeating this for all agents, the
system reaches a configuration Cfwd = 〈(qC3 , q13,t, q23,0,t,1, . . . qn3,0,t,1, (ec, e1, . . . en)〉
where agent An is the only agent with one unit of energy. From Cfwd, An can
transfer 1 unit of energy to AC , and unlock its move to qC4,t and then reach qC4,t
with energy level 2. These two units of energy can be successively transferred to
Ap1

, · · ·Apn
as in the preceding phase, so that the system reaches a configuration

Cmov = (qC6 , q
1
6,t, q

2
6,0,t,1, . . . q

n
6,0,t,1, 0

n.1) where agent Apn
is the only agent with

energy level 2, that they can transferred to AC . From this new configuration,
one can reach configuration Cm′ = 〈(qC1 , A1,0, A2,1, . . . An,b′n

), 0n+1〉. ut

Lemma 1 shows that transfer systems can simulate a safe Petri net, and that
for a pair of markings m[t〉m′, there exist a "canonical" run ρm,m′ from stable
configuration Cm to stable configuration Cm′ that does not visit any other stable
configuration.

Notice however that ρm,m′ is not the only run from Cm to Cm′ , nor the only
run from Cm. Let us denote by ρm,C,t the run that starts from Cm, and is com-
posed only of successive moves of the controller that visit qC1,t, qC2,t, qC3,t, qC4,t, qC5,t, qC6,t
before getting back to qC1 . Then, the concatenation of such run portions forms a
legal run ρm,C,ti1 . . . ρm,C,ti1 .ρm,C,t from Cm to Cm′ , for every sequence of transi-
tions ti1 . . . tik, independent of whether they are firable or not from m. However,
this stuttering behaviour of the controller does not permit to reach other stable
configurations than Cm, and can thus be ignored.

It remains to show that runs that are not sequences of canonical runs either
contain a stuttering of an agent, or deadlock, and in both cases explore no stable
configurations other than Cm or Cm′ . To do so, we put forward the properties
of configurations and transitions of the transfer system.

Reachability in multi-agent transfer systems (Extended Version) 29

For a configuration C = (qc, q1, . . . qn, E), we will say that agent i is commit-
tedto the simulation of transition t with bits bi, b′i if its current state is of the
form qis,bi,t,b′i

.
Starting from a configuration Cm = 〈(qC1 , A1,b1 , . . . An,bn), 0

n+1〉, we can
build a transition system that stores for each agent-place Api its local state,
the chosen transition that it is currently simulated, and the associated bits that
memorize the marking m(pi) ansd m(pi−1). For agent Ac, local states will be
of the form (qc1, ec) or (qck,t,bc , ec) where k is an integer in [2, 6], bc a bit, t a
transition, ec an integer. For agent Ap1 , local states will be of the form (A1

1, b1)
or (q1k,b1,t, e1) where k is an integer in [1, 6], bc a bit, t a transition, e1 an integer
For agents Api , i ∈ 2..n, local states will be of the form (Ai

1, bi) or (qck,bi,t,b′i , ei)
where k is an integer in [1, 6], bi, b′i are bit, t a transition, and ei an integer.

The definition of transfer groups in the construction of the system imposes
the following constraints. A transfer necessarily occurs between agent Apn and
agent Ac, of between a pair of agents Api

, Api+1
, i ∈ 1..n − 1. Further, this

transfer can occur between two agents iff they agree on the chosen transition
to simulate and on the marking of the preceding place. Transfers that occur
between the controller and Ap1

occur in transfer group {qc2,t,j , q11,b1,t} and in
transfer group {qc5,t,0, q5,t,1, q14,0,t, q14,0,t}, that is if both agents have chosen the
same transition. Transfers that occur between Ap1

and Ap2
occur in a transfer

group of the form {q13,b1,t, q
2
1,0,t,b1

, q21,1,t,b1} and in a transfer group of the form
{q16,b1,t, q

2
4,0,t,b1

, q24,1,t,b1}, that is if Ap1 and Ap2 have chosen the same transition
t, and Ap2 has correctly guessed m(p1). Last, transfers that occur between Api

and Api+1
occur in a transfer group of the form {qi3,b1,t,b′1 , q

i+1
1,0,t,b1

, qi+1
1,1,t,b1

} and
{qi6,b1,t, q

i+1
4,0,t,b1

, qi+1
4,1,t,b1

}, with identical transition and correctly chosen bits.

Claim. If agents Api
and Api+1

choose different transitions, or Api+1
wrongly

guesses pi’s marking, then the transfer system deadlocks without reaching a
stable configuration.

The main principle of a run simulating a transition firingm[t〉m′ is that when
all agents agree on a common transition, one unit of energy flows from Ac to
Ap1 , Ap2 . . . Apn and then back to Ac. A second round then starts, with two
units of energy transferred successively to Ac to Ap1 , Ap2 . . . Apn . If two agents,
say Api

and Api+1
have done incompatible choices, then Api+1

is blocked in state
qi1,bi+1,t′,bi+1

. On the other hand, Agent AC is blocked in state q3 and all other
agents are blocked in state q4.

Claim. In every stable configuration ec +
∑
ei = 0

Proof. Let ρC1,C2 be a run from a stable configuration C1 with energy levels
E1 = (e1c , e

1
1, . . . e

1
n) = 0n+1 for every agent to a stable configuration C2 with

E2 = (e2c , e
2
1, . . . e

2
n). Then this run can be projected on each agent C,A1, . . . An

to get local sequences of transitions. Let ρCC1,C2
be the projection on the controller

agent. Then ρCC1,C2
is a succession of cycles around qC1 . Each cycle has a total

weight of 0 so ρCC1,C2
has a weight W (ρCC1,C2

) = 0. Similarly, the projection of

30 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

ρCC1,C2
of a given agent Ai is a sequences of paths from Ai,b to Ai,b′ of weight

0. As no extraction from the environment is performed during ρCC1,C2
, transfers

just move energy from one component to another, and we have that e2c +
∑
e2i =

W (ρCC1,C2
) +

∑
W (ρiC1,C2

) = 0. So, we also have E2 = 0n+1.

Claim. The total amount of energy in the system is always smaller than 2.

This can be observed by constructing the transition system, and also consid-
ering the fact that agents play sequences of weight 0, and need to receive energy
from their predecessor to get through transitions of weight −2. A consequence
is that, at a given instant, at most one agent is able to get through transitions
of weight −2. This leads to the following claim:

Claim. Let C = 〈(sc, s1, . . . si . . . sn), (ec, e1, . . . 2, . . . en)〉 such that si = q6,bi,t,b′i ,
si+1 = q4,bi+1,t,b′i+1

. Then, if Ai transfers one unit of energy to Ai+1 and moves
to its next state of the form Ai,x, then the system deadlocks and never reaches
a stable configuration.

Proof. After transfer, two agents have one unit of energy, and necessarily meet
a transition of weight −2.

Claim. Let C = 〈(sc, s1, . . . si . . . sn), (ec, e1, . . . 2, . . . en)〉 such that si = q6,bi,t,b′i ,
si+1 = q4,bi+1,t,b′i+1

. Then, if Api
does not transfer energy to Api+1

and moves to
its next state of the form Ai,x, then Api+1

stays in si+1 as long as configuration
C is not visited again.

In this setting, agent Api
keeps 2 energy units and can iterate choices of

bits and transitions without waiting for energy from the preceding agent. It
may hence visit an arbitrary number of times a local state of the form Ai, x and
choose new sequences of transitions to commit to. In the meantime, other agents
can perform only a bounded number of steps of weight 0, and in any case Api+1

cannot move. Notice that no stable configuration is met, regardless of the length
of the run.

Let ρm1,m2
be the run from Cm1 to Cm2 shown in the proof of lemma 1. One

can remarks that one requires 2.n+2 transfers, using transfer groups in the order
Ac → A1An → Ac,A1An → Ac. One can find equivalent runs up to permutation
of some transitions of positive weight that do not change the appearance order
of transfer groups, and reach Cm2. Following the claims above, we can say that,
in any of the unstable configurations visited in these runs, if an agent does not
perform the good choice of transition, of marking bit, or transfers less energy
than in the considered run ρm1,m2 , then the system either deadlocks, or enters
an infinite sequence of moves that can be only exited by sending back the faulty
agent to the state from which the wrong choice was performed, without visiting
a stable configuration.

We can hence conclude that a marking m of the safe Petri net N is reachable
from marking m0 if and only if the stable configuration Cm is reachable from
the configuration Cm0 in TSN .

Reachability in multi-agent transfer systems (Extended Version) 31

B Missing proof for Section 5.3

Theorem 9 `w-Reach is undecidable.

Proof. We provide here the constructions for the increment and zero test gadgets.
• If the command li increments counter z ∈ {x, y}, we handle it in a very similar
way as the decrement (see Figure 7): the only difference is that we add another
step at the bottom so that Ai has one too much energy when interacting with
Az instead of one too little. Due to the similarity, we do not detail this case.

li0 li1 li2 li3 li4 li5 li6 li7 li8 li9

qi0 qi1 qi2 qi3 qi4 qi5

qz0Az

Bad

li+1
0

+1 -2 +3

-1 +3 -3 +4

-4Ac

Ai

Fig. 9. Encoding an increment.

• Let us now consider the case where the command li tests whether the counter z
is equal to 0, in which case it moves to command line lk, and otherwise it moves
to lm. Again, in order to handle this command line, we will use three agents: the
control agent Ac, the agent associated to counter c, Az and a counter dedicated
to li, Ai. This case is a slightly more involved, and we will in particular reuse
the increment and decrement gadgets as black boxes.

The transfer system 〈Az,Ac,Ai, T 〉 is illustrated in Figure 10 and formally
defined by:

– Az = (Vz, q
z
0 , Ez, wz) with

Vz = {qzj | j = 0 . . . 5} ∪ {Badz};
Ez =

{
qzj

wj−→ lzr | j = 0 . . . 5 ∧ r ≡ j + 1 (mod 6)
}
∪ {(qz5

0−→ Badz)};
and w0 = 1, w2 = −1, w3 = 4, w5 = −4 and all other wj ’s are equal to 0.

– Ai = (Vi, q
i
1, Ei, wi) with

Vi = {qij | j = 0 . . . 10} ∪ {Badi};

32 N. Bertrand, L. Hélouët, E. Lefaucheux and L. Paparazzo

Ez =
{
qij

wj−→ lir | j = 0 . . . 10 ∧ r ≡ j + 1 (mod 1)1
}
∪{(qi6

0−→ Badi), (qi10
0−→

Badi)};
and w0 = −1, w1 = 2, w6 = −1, w7 = 3, w10 = −4 and all other wj ’s are

equal to 0.
– Ac = (V c

i , l
i
0, E

c
i , w

c
i) with

V c
i = {lim | m = 0 . . . 8} ∪ {Badc, lm0 , l

k
0 , Decrement z,Increment z} where

Decrement z and Increment z represent an entire gadget allowing to
decrement or increment z;

Ec =
{
lij

wj−→ lij+1 | j = 0 . . . 7
}
∪{(li8

0−→ lk0), (l
i
3

0−→ Badc), (li4
0−→ Badc),

(li0
0−→Decrement z), (Decrement z 0−→Increment z), (Increment z 0−→ lm0)};

and w0 = 1, w3 = −2, w4 = −1, w5 = 1, w6 = −2, q7 = 4 and all other wj ’s
are equal to 0.

– T contains the groups {li1, qi0}, {li3, qi2}, {li4, qz1}, {li6, qi6, qi, 9}, {li8, qz5}, {qi8, qz2},
and {qi10, qz4}.

li0 Decrement z Increment z lj0

li1 li2 li3 li4

Bad

li5 li6 li7 li8 lk0

Ac

+1

-2 -1 +1 -2 +4

qi0 qi1 qi2 qi3 qi4 qi5 qi6 Bad

qi7 qi8 qi9 qi10

Ai −1 +2

−1

+3

−4

qz0 qz1 qz2 qz3 qz4 qz5 Bad
Az +1 −1 +4

−4

Fig. 10. Encoding a zero test.

Let us show that if the agents Ac,Ai and Az start in li0, qi0 and qz0 with 0,
0 and n energy levels respectively, then the only way to avoid the Bad vertices
leads them to the vertices lm0 , qi0 and qz0 with 0, 0 and n energy units respectively
if n > 0 and to the vertices lk0 , qi0 and qz0 with 0, 0 and 0 energy levels respectively
otherwise. Hence, executing the command line li indeed selects the new vertex
of Ac depending on the energy level of Az.

Reachability in multi-agent transfer systems (Extended Version) 33

First, consider the path from li0 which goes through the decrement then
increment of z before reaching lm0 . The decrement step can only be achieved
without encountering a bad vertex if the energy of Az is at least 1, ensuring the
correction of this part of the construction. So we focus on the rest of the gadget,
showing it can only be taken if the energy in Az is exactly 0 at the start. As for
the decrement and increment gadget, we will rely on the need to wait for the
other agent to ensure the energy is low.

Let us now explain this in details. We assume Az has n energy. Following the
previous point, we can assume Ac starts by going in li1, gaining 1 energy. It can
either continue from this point, but without additional energy it will reach Bad
from li3 as it cannot pay 2. So it gives 1 to qi0. Both then reach li3 and qi2 where
Ai must give its 2 energy so that Ac does not reach Bad. They then move to
li4 and qi3. In li4, to avoid Bad, Ac must receive 1 from Az in qz1 . Az can pay
this no matter the value of n as it just gained one energy by taking (qz0 , q

z
1).

If n 6= 0, Az could have given more than 1 to Ac however. Let n1 and n2 be
the energy amounts so that the next configuration is ((li5, qi4, qz2), (n1, 0, n2)). In
particular, n = n1 + n2. If n2 is at least 1, then Az will be able to advance. As
we will see, Az will be necessary for the other agents to avoid Bad, so n2 = 0
(and thus n1 = n). On the next step, the agents reach ((li6, q

i
5, q

z
2), (n1+1, 0, 0)).

Again, if n1 is at least 1, then Ac will advance on the next step, and thus Ai

will not be able to avoid Bad from qi6. So n1 = 0. The next configuration is
thus ((li6, q

i
6, q

z
2), (1, 0, 0)) where Ac transfers 1 to Ai so that (qi6

−1−→ qi7) can
be taken. The following configurations are thus ((li6, q

i
7, q

z
2), (0, 0, 0)) and then

((li6, q
i
8, q

z
2), (0, 3, 0)). There, Ai needs to free Az, or it will not have the 4 units

of energy required to leave qi10 while avoiding Bad. Precisely, it must give 1 to
Az, and then 2 to Ac on the next step (the 4 energy Ac will obtain by reaching li8
are needed to avoid Bad in the other two agents). With those two transfers, the
configuration is thus ((li6, qi9, qz3), (0, 2, 0)) and then ((li7, q

i
10, q

z
4), (0, 0, 4)). Then,

the only configuration avoiding Bad is ((li8, q
i
0, q

z
5), (4, 0, 0)) which again offers

only one option ((lk0 , q
i
0, q

z
0), (0, 0, 0)) which is the claimed end configuration of

this gadget in the case where Az initially has 0 energy.
This gadget has one specificity that must be mentionned: while every other

gadget is “stuck” when Ac is not reading the current command line, this is not
the case for Az here. It can in fact loop throughout his line of vertices by itself
no matter how much initial energy it has. This has no impact however as during
this loop it can exchange energy only if the other agents are going through the
same command line, and the entire loop does not modify its amount of energy.

ut

	Reachability in multi-agent transfer systems(Extended Version)

