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Abstract. Diagnosis of partially observable stochastic systems prone to
faults was introduced in the late nineties. Diagnosability may be specified
in different ways: exact diagnosability requires that almost surely a fault
is detected and that no fault is erroneously claimed; approximate diag-
nosability tolerates a small error probability when claiming a fault; last,
accurate approximate diagnosability guarantees that the error probability
can be chosen arbitrarily small. While all three notions were studied
for passive systems such as observable Markov chains, only the exact
notion was considered for systems equipped with a controller. As the
approximate notion of diagnosability was shown to be undecidable in
passive systems, in this article, we complete the picture by deciding the
accurate approximate diagnosability for controllable observable Markov
chains. More precisely, we show how to adapt the accurate approximate
notion to the active setting and establish EXPTIME-completeness of the
associated decision problem. We also show how to measure the set of
faulty paths that are detected under the accurate approximate notion in
the passive setting.
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1 Introduction

Diagnosis and diagnosability. There has been an increasing use of software systems
for critical operations. When designing such systems, one aims at eliminating
faults that could trigger unwanted behaviours. However, for embedded systems
interacting with an unpredictable environment, the absence of faults is not
a reasonable hypothesis. Thus diagnosis, whose goal consists to detect faults
from the observations of the runs of the system, is a crucial task. One of the
approaches frequently used to analyse diagnosability consists in modelling the
system by a transition system whose states (depending on the internal part of
the system) are unobservable and events may, depending on their nature, be
observable or not. One of the proposed approaches consists in modelling these
systems by partially observable labelled transition systems (poLTS) [24]. In such
a framework, diagnosability requires that the occurrence of unobservable faults
can be deduced accurately from the previous and subsequent observable events.
In other words, defining the disclosure set of a system as the set of faulty paths
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of the system that can be detected, a system is diagnosable if every faulty path
belongs to the disclosure set. Diagnosability for poLTS was shown to be decidable
in PTIME [18]. Diagnosis has since been extended to numerous models (Petri
nets [12], pushdown systems [20], etc.) and settings (centralized, decentralized,
distributed), and have had an impact on important application areas, e.g. for
telecommunication network failure diagnosis.

Diagnosability for stochastic passive systems. In transition systems, the unpre-
dictable behaviours of the environment are modelled by a nondeterministic choice
between the possible events from the current state. However, in order to quantify
the risks induced by the faults of the systems, the designer often substitutes the
nondeterministic choice by a random choice or equivalently by a weighted one.
Then the model becomes a discrete time observable Markov chain (oMC) in the
passive case (i.e. without control). In these models, one can define a probability
measure over infinite runs. In that context, the accuracy required to claim a path
is faulty can be relaxed. There are three natural variants: (1) exact disclosure,
which, as in the non-stochastic case, requires that every path sharing the given
observation sequence is faulty in order to claim a fault occurred, (2) ε-disclosure
for ε > 0 which tolerates small errors, allowing to claim the failure of a path if
the conditional probability that the path is faulty exceeds 1− ε, and (3) Accurate
Approximate disclosure (AA-disclosure) which is satisfied when the accuracy of
the guess can be chosen arbitrarily high. Diagnosability with exact disclosure has
been studied extensively for oMC [25, 6, 8]. In particular, various exact notions
of diagnosability have been shown to be PSPACE-complete for oMC. Due to
the quantitative requirement, diagnosability with ε-disclosure was shown to be
undecidable while diagnosability with AA-disclosure was surprisingly shown to
be in PTIME [7].

Active diagnosability. Embedded systems are often equipped with one (or more)
controller(s) in order to maintain some functionalities of the system in case of
a pathological behaviour of the environment. It is thus tempting to add to the
controller a diagnosis task. Formally some of the observable events are controllable
and considering its current observation, the controller chooses which subset of
actions should be allowed to make the system diagnosable. As such, a controller
only has access to the observations produced by the system to make his choice.
This represents the idea that the control is realised by the same entity as the
diagnosis. A system is said actively diagnosable if there exists a controller ensuring
diagnosability [23, 26, 13, 14, 17]. In [17], the authors designed an exponential time
algorithm and proved the optimality of this complexity. In stochastic systems,
diagnosability has only been considered with exact disclosure and has been proven
EXPTIME-complete [5].

Contribution In this paper, we study diagnosability in stochastic systems under
AA-disclosure.

– we introduce an alternative definition of AA-disclosure and establish its
equivalence with the notion introduced in [25] (Proposition 1)
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– we show that measuring the set of AA-disclosing paths for oMC is PSPACE-
complete (Theorem 3);

– we establish that diagnosability with AA-disclosure for controllable oMC is
EXPTIME-complete (Theorem 4).

For space concerns, some technical proofs are deferred to the appendix.

2 Diagnosis of Markov Chains

2.1 Observable Markov Chains

For a finite alphabet Σ, we denote by Σ∗ (resp. Σω) the set of finite (resp. infinite)
words over Σ, Σ∞ = Σ∗ ∪Σω and ε the empty word. The length of a word w is
denoted by |w| ∈ N ∪ {∞} and for n ∈ N, Σn is the set of words of length n. A
word u ∈ Σ∗ is a prefix of v ∈ Σ∞, written u ≤ v, if v = uw for some w ∈ Σ∞.
The prefix is strict if w 6= ε. For n ≤ |w|, we write w↓n for the prefix of length n
of w. Given a countable set S, a distribution on S is a mapping µ : S → [0, 1]
such that

∑
s∈S µ(s) = 1. The support of µ is Supp(µ) = {s ∈ S | µ(s) > 0}. If

Supp(µ) = {s} is a single element, µ is a Dirac distribution on s written 1s. We
denote by Dist(S) the set of distributions on S.

For the purpose of partially observable problems, the model must be equipped
with an observation function describing what an external observer can see. The
observation function can be obtained via a labelling of states or transitions, both
options being known to be equivalent. We thus define observable Markov chains
(see Figure 1).

Definition 1 (Observable Markov chains). An observable Markov chain
(oMC) over alphabet Σ is a tuple M = (S, p,O) where S is a countable set
of states, p : S → Dist(S) is the transition function, and O : S → Σ is the
observation function.

We write p(s′|s) instead of p(s)(s′) to emphasise the probability of going
to state s′ conditioned by being in state s. Given a distribution µ0 ∈ Dist(S),
we denote by M(µ0) the oMC with initial distribution µ0. For decidability
and complexity results, we assume that all probabilities occurring in the model
(transition probabilities and initial distribution) are rationals. A (finite or infinite)
path of M(µ0) is a sequence of states ρ = s0s1 . . . ∈ S∞ such that µ0(s0) > 0
and for each i ≥ 0, p(si+1|si) > 0. For a finite path, ρ = s0s1 . . . sn, we call n its
length and denote its ending state by last(ρ) = sn. A finite path ρ1 prefixes a
finite or infinite path ρ if there exists a path ρ2 such that ρ = ρ1ρ2. The set Cyl(ρ)
represents the cylinder of infinite paths prefixed by ρ. We denote by Path(M(µ0))
(resp. fPath(M(µ0))) the set of infinite (finite) paths of M(µ0). The observation
sequence of the path ρ = s0s1 . . . is the word O(ρ) = O(s0)O(s1)... ∈ Σ∞. For a
set R of paths, O(R) = {O(ρ) | ρ ∈ R} and for a set W of observation sequences,
O−1(W ) = {ρ ∈ Path(M(µ0)) ∪ fPath(M(µ0)) | O(ρ) ∈W}.

Forgetting the labels, an oMC with an initial distribution µ0 becomes a
discrete time Markov chain (DTMC). In a DTMC, the set of infinite paths is the
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Fig. 1. An observable Markov chain. The arrow entering the leftmost state means that
the initial disribution is a Dirac on this state. Faulty states are circled twice.

support of a probability measure extended from the probabilities of the cylinders
by the Caratheodory’s extension theorem:

PM(µ0)(Cyl(s0s1 . . . sn)) = µ0(s0)p(s1|s0) . . . p(sn|sn−1) .

When M(µ0) is clear from context, we will sometimes omit the subscript, and
write P for PM(µ0). Let ρ ∈ fPath(M), w ∈ Σ∗ and E ⊆ Σω, with a small abuse
of notation we write P(ρ) for P(Cyl(ρ)), P(w) instead of P(∪ρ∈O−1(w)Cyl(ρ))
and P(E) instead of P({ρ ∈ Path(M(µ0)) | ρ ∈ O−1(E)}).

2.2 Faulty Paths and Notions of Disclosure

In this paper we are interested in the study of diagnosis, a problem in which one
wants to detect whether the current path correspond to a faulty behaviour of the
system. We focus on the particular case where the faulty behavior of the system
is given by a subset of states SF ⊆ S, called faulty states, of the model: a (finite
or infinite) path s0s1 . . . is faulty if si ∈ SF for some i. The set of finite (resp.
infinite) faulty paths is denoted F (resp. F∞). A path that is not faulty is called
correct. Remark that without loss of generality, we can assume that the set of
faulty states is absorbing, i.e. if a path visits SF, it forever remains in SF.

In non-stochastic systems, a faulty path discloses its failure if it does not
share its observation sequence with any correct path, i.e. given a path ρ ∈ SF, it
discloses its failure iff O−1(O(ρ)) ⊆ SF. When adding probabilities, one could keep
the same definition of disclosure, this is what we call exact disclosure. Denoting
Discexact the set of infinite disclosing faulty paths, the exact diagnosability
problem for oMC asks whether P(Discexact) = P(F∞). This problem is known to
be PSPACE-complete for oMC [8].

However, one could also weaken the requirement by allowing potential false
claims. In this case, a faulty path is disclosing if, based on its observation,
the likelihood of the path to be faulty is high. To formalise this likelihood,
we define the failure proportion as the conditional probability that a path is
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faulty, given its observation sequence. Formally, given an oMC M = (S, p,O), an
initial distribution µ0, SF ⊆ S and an observation sequence w ∈ Σ∗, the failure
proportion associated with the observation sequence w is:

FpropM(µ0)(w) =
P({ρ ∈ O−1(w) | ρ ∈ F})

P(w)
.

This proportion is undefined if P(w) = 0.

Example 1. Consider the oMC of Figure 1 and the observation sequences ak,
akbn and akcm. The observation sequence ak, for k > 1, can be produced by
a correct path with probability 1/2k−1 and by a faulty path with probability

1/2× 1/3k−2. Therefore, FpropM(µ0)(a
k) = 1/3k−2

1/2k−2+1/3k−2 which converges to 0

when k grows to infinity. The failure proportion of the observation akbn with

k > 1 and n ≥ 1 is similarly FpropM(µ0)(a
kbn) = 1/3k−1

1/2k−1+1/3k−1 which remains

constant for extensions of akbn as it does not depend on n. Finally, if m ≥ 1,
FpropM(µ0)(a

kcm) = 1 as no correct path can produce a ‘c’.

LetM = (S, p,O) be an oMC, µ0 be an initial distribution and SF ⊆ S. Given
ε > 0 representing the confidence threshold expected for the detection, we can
define the approximate notion of disclosure: an observation sequence w ∈ Σ∗ is
called ε-disclosing if FpropM(µ0)(w) > 1− ε. Moreover, it is ε-min-disclosing if it
is ε-disclosing and no strict prefix of w is ε-disclosing. Writing Dε

min for the set
of ε-min-disclosing observation sequences, the ε-disclosure is defined by

Discε(M(µ0)) = P({ρ ∈ F | ∃ρ′ ≤ ρ,O(ρ′) ∈ Dε
min}).

Discε is thus the probability that a path of the oMC will be faulty and disclose
its failure with sufficiently low doubt. The ε-diagnosability problem consists then
in deciding whether Discε(M(µ0)) = P(F∞). Unfortunately, it is known that
this problem is undecidable for ε 6= 0:

Theorem 1 ([7]). Given 0 < ε < 1, the ε-diagnosability problem is undecidable
for oMCs.

In order to regain decidability one can consider a slightly more qualitative
notion of approximate information control, that is called accurate approximate.
Instead of deeming the failure of a path to be revealed when the proportion
of faulty paths goes above a given threshold, an infinite observation sequence
is AA-disclosing if this proportion converges toward 1. In other words, when
observing an AA-disclosing observation sequence, one can get an arbitrarily high
confidence that the path is faulty. Formally, an observation sequence w ∈ Σω

is AA-disclosing if limn→∞ FpropM(µ0)(w↓n) = 1. Writing DAA for the set of
AA-disclosing observation sequences, the AA-disclosure is defined by

DiscAA(M(µ0)) = P({ρ ∈ F | O(ρ) ∈ DAA})
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As before, the AA-diagnosability problem consists in deciding if DiscAA(M(µ0)) =
P(F∞). When an oMC is not AA-diagnosable, it is interesting to measure
the probability of undetected faulty paths. This motivates the AA-disclosure
problem which consists in, given λ ∈ [0; 1] and ./∈ {>,≥}, deciding whether
DiscAA(M(µ0)) ./ λ.

AA-diagnosability was in fact initially defined in [25] slightly differently: a
system was then called AA-diagnosable if it was ε-diagnosable for all ε > 0.
However, the two definitions are in fact equivalent for oMC.

Proposition 1. An oMC is AA-diagnosable iff it is ε-diagnosable for all ε > 0.

Proof. Let M be an oMC and µ0 an initial distribution.
Suppose thatM(µ0) is AA-diagnosable. By definition, given an AA-disclosing

observation sequence w, for all ε > 0 there exists n ∈ N such that w↓n is ε-
disclosing. Therefore for all ε > 0, DiscAA(M(µ0)) ≤ Discε(M(µ0)). Moreover,
as M is AA-diagnosable, DiscAA(M(µ0)) = P(F). Thus, Discε(M(µ0)) ≥ P(F).
Finally, as only faulty paths are disclosing, for all ε > 0 Discε(M(µ0)) ≤ P(F).
Thus Discε(M(µ0)) = P(F) and M(µ0) is ε-diagnosable.

Conversely, suppose that M(µ0) is not AA-diagnosable. Let us consider the
set of infinite words D = ∩ε>0D

ε
minΣ

ω \DAA. Let us show that P(D) = 0. Let
w ∈ D, we have (1) for all ε > 0 there exists n ∈ N such that Fprop(w↓n) > 1− ε
and (2) (Fprop(w↓n))n∈N does not converge toward 1. Given ε > 0, due to (1) we
have

P({ρ ∈ O−1(D) \ F}) <
∑

w∈Dεmin

P({ρ ∈ O−1(w) \ F})

<
∑

w∈Dεmin

P({ρ ∈ O−1(w) ∩ F}) ε

1− ε

<
ε

1− ε
.

As this holds for all ε > 0, P({ρ ∈ O−1(D) \ F}) = 0. Moreover, due to (2), there
exists ε > 0 such that for infinitely many n ∈ N we have Fprop(w↓n) < 1 − ε.
For all k ∈ N, we denote by Ek the set of prefixes w of words of D such that
FpropM(µ0)(w) < 1− ε for the k’th time. We then have for all k:

P({ρ ∈ O−1(Ek) \ F}) =
∑
w∈Ek

P({ρ ∈ O−1(w) \ F})

>
∑
w∈Ek

P({ρ ∈ O−1(w) ∩ F}) ε

1− ε

>
ε

1− ε
P({ρ ∈ O−1(D) ∩ F})

As (P({ρ ∈ O−1(Ek) \ F}))k∈N converges toward P({ρ ∈ O−1(D) \ F}) which is
equal to 0, this implies that P({ρ ∈ O−1(D) ∩ F}) = 0 and thus that P(D) = 0.
As a consequence, limε→0 P(Dε

min) = P(DAA). As M(µ0) is not AA-diagnosable
by assumption, there thus exists ε > 0 such thatM(µ0) is not ε-diagnosable. ut
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The alternative definition of AA-diagnosability was introduced for two reasons.
First, through Proposition 1 it helps build a better understanding of this notion,
often misunderstood (see for instance the uniform / non-uniform discussion on
AA-diagnosability in [8]). Second, it helps clarify and analyse the notion in a
controllable framework: as we will see later, we aim to build a single strategy
achieving arbitrary high confidence, not a family of strategies each achieving
ε-diagnosability for increasingly small ε.

With the accurate approximate approach to diagnosability, one regains decid-
ability. Indeed, the AA-diagnosability problem for finite oMC was shown to be
in PTIME in [7]. This result relies on the notion of distance between two oMC
introduced in [16] and defined in the following way: the distance between two
oMC M1 and M2 with initial distribution µ1 and µ2 is

d(M1(µ1),M2(µ2)) = max
E⊆Σω

|PM1(µ1)(E)−PM2(µ2)(E)|1.

The authors of [16] show how to decide in PTIME if the distance between two
oMC is 1 thanks to the following characterisation.

Proposition 2 ([16]). Given two oMCM1 andM2 and two initial distributions
µ1 and µ2, d(M1(µ1),M2(µ2)) < 1 iff there exists w ∈ Σ∗ and two distributions
π1 and π2 such that, denoting for i ∈ {1, 2}, µwi (s) = PMi(µi)({ρs ∈ S∗ |
O(ρs) = w}), we have, Supp(πi) ⊆ Supp(µwi ) and d(M1(π1),M2(π2)) = 0 ( i.e.
∀w′ ∈ Σ∗,PM1(π1)(w

′) = PM2(π2)(w
′)).

Finally, the link between the distance 1 of two oMC and AA-diagnosability was
established in [7], giving the PTIME algorithm:

Theorem 2 ([7]). Let M be a finite oMC and µ0 be an initial distribution.
M(µ0) is not AA-diagnosable iff there exist two states s ∈ SF and s′ ∈ S \SF with
s′ belonging to a bottom strongly connected component (BSCC)2 of M and there
exist two finite paths ρ and ρ′ of fPath(M(µ0)) such that last(ρ) = s, last(ρ′) = s′,
O(ρ) = O(ρ′) and d(M(1s),M(1s′)) < 1.

From the above theorem, one deduces that AA-diagnosability can be tested
by checking the distance 1 of an at most quadratic number of oMC, leading to
the PTIME algorithm. The results of this paper also study AA-diagnosability by
establishing links to the distance 1 problem. These results however go farther
than the characterisation of Theorem 2. In particular, when studying controllable
systems, we will need to consider infinite oMC. To that end, we can already note
that, speaking of the sufficiency condition only, a more general result was in fact
proven in [7]:

Proposition 3 ([7]). LetM be an oMC, µ0 be an initial distribution, two states
s ∈ SF and s′ ∈ S \ SF with s′ such that no faulty state can be reached from s′

and two finite paths ρ and ρ′ of fPath(M(µ0)) such that last(ρ) = s, last(ρ′) = s′,

1 Note that the absolute values are technically not necessary as PM1(µ1)(E) = 1 −
PM1(µ1)(Σ

ω \ E)
2 A BSCC is a strongly connected component that cannot be escaped from.
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O(ρ) = O(ρ′). Then M(µ0) is AA-diagnosable implies that d(M(1q),M(1q′)) =
1.

While AA-diagnosability can be decided in polynomial time, the AA-disclosure
problem is a bit more complicated. This is not surprising as AA-diagnosability
consists in testing whether DiscAA(M(µ0)) is equal to P(F∞) (the latter being
easy to compute as it is solely a reachability property) while the AA-disclosure
requires to measure precisely DiscAA(M(µ0)).

Theorem 3. The AA-disclosure problem for finite oMC is PSPACE-complete.

Proof (Sketch of proof). In order to solve the AA-disclosure problem in PSPACE.
We first build an exponential size oMC which contains additional information
compared to the original one. Then we show that there are two kinds of BSCC
in this new oMC: the ones that are reached by paths that almost surely have an
AA-disclosing observation sequence, and the ones that are reached by paths that
almost surely do not correspond to AA-disclosing observation sequences. We then
use the existing results for the AA-diagnosability problem to determine the status
of each BSCC. Finally, computing the AA-disclosure of the oMC is equivalent
to computing the probability to reach the “AA-disclosing” BSCC, which can be
done in NC in the size of the oMC, thus giving an overall PSPACE algorithm.

The hardness is obtained by reduction from the universality problem for
non-deterministic finite automaton (NFA), which is known to be PSPACE-
complete [19]. ut

3 Diagnosis of Controllable Systems

3.1 Controllable Observable Markov chains

An extension of the oMC formalism allowing us to express control requires us
to fix at least two features of this formalism: the nature of the control and
the distribution of probabilities of the controlled system. Controllable weighted
Observable Markov chains (CoMC) are an extension of oMC equivalent to the
model of controllable weighted labelled transition systems (CLTS) which were
introduced for diagnosis in [5] (the difference between the two models lies in
whether the states or the transitions are labelled by an observation). CoMC can
also be compared to partially observable Markov decision processes (POMDP):
the two classes of models are as expressive, but CoMC can be exponentially more
succinct.

In order to specify the control in a CoMC, a subset of observable events is
considered as controllable. The control strategy forbids a subset of controllable
events depending on the sequence of observations it has received so far. The
transitions of the system are no longer labelled by (rational) probabilities but
rather by (integer) weights which represent their relative probabilities. Given a
state and a set of allowed events, in order to obtain a probability distribution
on the allowed transitions, the weights of the outgoing transitions labelled by
uncontrollable or allowed controllable actions are normalised. Provided that the
control strategy does not create any deadlock, the controlled CoMC is an oMC.
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Definition 2 (CoMC). A Controllable weighted Observable Markov chains
(CoMC) over alphabet Σ is a tuple M = (S, T,O) where S is a finite set of states,
T : S × S → N is the transition function labelling transitions with integer weights
and O : S → Σ is the observation function.

The alphabet is partitioned into controllable and uncontrollable events Σ =
Σc ]Σe. A set Σs ⊆ Σ of allowed events in a state s ∈ S is a set of observations
such that Σe ⊆ Σs and {s′ ∈ S | T (s, s′) > 0 ∧ O(s′) ∈ Σs} 6= ∅. Given a state
s and a set of allowed events Σs, we define the transition probability p(s,Σs)

such that for all s′ with O(s′) ∈ Σs, p(s,Σs)(s
′) = T (s,s′)∑

s′′,O(s′′)∈Σs T (s,s′′) . As before,

we write p(s′|s,Σs) instead of p(s,Σs)(s
′). Given an initial distribution µ0, an

infinite path of a CoMC M(µ0) is a sequence ρ = s0Σ0s1Σ1 . . . where µ0(s0) > 0
and p(si+1|si, Σi) > 0, for si ∈ S and Σi is a set of allowed events in si, for
all i ≥ 0. As for oMC, we define finite paths, and we use similar notations for
the various sets of paths. A sequence of observations and sets of allowed events
b ∈ (Σ × 2Σ)∗Σ is called a knowledge sequence. The knowledge sequence of a
path of a CoMC ρ = s0Σ0s1Σ1 . . . si is K(ρ) = O(s0)Σ0O(s1)Σ1 . . .O(si).

The nondeterministic choice of the set of allowed events is resolved by strate-
gies.

Definition 3 (Strategy for CoMC). A strategy of CoMC M with initial
distribution µ0 is a mapping σ : (Σ × 2Σ)∗Σ → Dist(Σ) associating to any
knowledge sequence a distribution on sets of events.

We will only consider here strategies that do not generate a deadlock, i.e. strategies
σ such that for all state s reached after a knowledge b, σ(b) is a distribution
on sets of allowed events for s. Given a strategy σ, a path ρ = s0Σ0s1Σ1 . . . of
M(µ0) is σ-compatible if for all i, Σi ∈ Supp(σ(K(s0Σ0s1Σ1 . . . si)). A strategy
σ is deterministic if σ(b) is a Dirac distribution for each knowledge sequence b.
In this case, we denote by σ(b) the set of allowed actions Σa ∈ 2Σ such that
σ(b) = 1Σa . Let b be a knowledge sequence. We define BM(µ0)(b) the belief about
states corresponding to b as follows:

BM(µ0)(b) = {s | ∃ρ ∈ fPath(M(µ0)), K(ρ) = b ∧ s = last(ρ)}

A strategy σ is belief-based if for all b, σ(b) only depends on its belief BM(µ0)(b)
(i.e. given two knowledge sequence b and b′ if BM(µ0)(b) = BM(µ0)(b

′) then
σ(b) = σ(b′)). For belief-based strategies, we will sometimes write σ(B) for the
choice of the strategy made for knowledge sequences producing the belief B.

As for oMC, the failure of a path is defined by the reachability of a set SF ∈ S
of faulty states of the CoMC and we assume again that this set is absorbing.

A strategy σ on M(µ0) defines an infinite oMC Mσ(µ0) where the set of states
is the finite σ-compatible paths, the observation function associates Σn−1O(sn)
with the state corresponding to the finite path ρ = s0Σ0 . . . Σn−1sn (Σn−1 being
omitted if n = 0) and the transition function pσ is defined for ρ a σ-compatible
path and ρ′ = ρΣas

′ by pσ(ρ′|ρ) = σ(K(ρ))(Σa)p(s′|s,Σa). We denote by PMσ(µ0)

the probability measure induced by this oMC. When the strategy possesses some
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good regularity properties, this oMC is equivalent to a finite one (i.e. there is
a one-to-one correspondence between the paths of each oMC, it preserves the
knowledge sequence and the probability. The two oMC have therefore the same
disclosure properties). For instance given a deterministic belief based strategy
σ, one can define the oMC M′σ with set of states S × 2Σ × 2S , observation
O′σ(s,Σ•, B) = (O(s), Σ•), initial distribution µσ0 (s, ∅,Supp(µ0) ∩ O−1(O(s))) =
µ0(s) and transition function p′σ((s1, Σ1, B1) | (s2, Σ2, B2)) = p(s1 | s2, Σ2)
if σ(B1) = Σ2 and B2 = BM(µ1)(O(s2)) for µ1 a distribution of support B1,
p′σ((s1, Σ1, B1) | (s2, Σ2, B2)) = 0 otherwise. The oMC M′σ is exponential in the
size of M and is equivalent to Mσ. When considering belief-based strategies, we
will call Mσ the finite equivalent oMC.

Writing VMσ(µ0) for the set of infinite paths corresponding to AA-disclosing

observation sequences in Mσ(µ0), we have DiscAA(Mσ(µ0)) = PMσ(µ0)(VMσ(µ0)).
The control of the system is assumed to support the diagnosis. Therefore, the
AA-diagnosability problem for CoMC consists in, given a CoMC M and an initial
distribution µ0, deciding whether there exists a strategy σ such that Mσ(µ0) is
AA-diagnosable (aka, such that PMσ(µ0)(VMσ(µ0)) = PMσ(µ0)(F∞)).

Example 2. Consider the CoMC on the left of Figure 2. Without any control
(i.e. with a strategy permanently allowing every event), one obtains the oMC of
Figure 1, which is not AA-diagnosable. However, assuming ‘b’ is a controllable
event, the strategy that always forbids it induces the oMC on the right of Figure 2
which is AA-diagnosable: every faulty path almost surely contains a ‘c’ that can
not be generated by a correct path. This oMC is in fact exactly diagnosable as
once a ‘c’ occurs the failure proportion becomes equal to 1.

Remark that an observation sequence of the oMC induced by a CoMC and a
strategy contains both the observation of the state of the CoMC and the choices
of allowed events done by the strategy. The observation sequence of a path in the
induced oMC is therefore equal to the knowledge sequence of the corresponding
path in the CoMC and as such, we will only speak of observation sequences in
the following. This choice of observation was done to express that the choices
made by the strategy are known to the observer. An important consequence of
this decision is that the strategy does not modify which observation sequences
are AA-disclosing.

Lemma 1. Given M a CoMC, µ0 an initial distribution, SF ⊆ S, σ, σ′ two
strategies and w an observation sequence produced by at least one path of Mσ(µ0)
and at least one path of Mσ′(µ0), then FpropMσ′ (µ0)(w) = FpropMσ(µ0)(w).

Proof. Let M be a CoMC, µ0 be an initial distribution, σ be a strategy and
w = o0Σ0 . . . Σn−1on be an observation sequence produced by at least one
path of Mσ(µ0). By definition of w, FpropMσ(µ0)(w) is defined and in particular



Approximate Diagnosis of Controllable Stochastic Systems 11

a

q0
a

r0 b

r1

c

r2

a

q1

b

q2

1

1

1

1

1

1

1

1

1

1

a. ∅

(q0. ∅. {q0})
a. {a. c}

(r0. {a. c}. {r0. q1})

c. {a. c}

(r2. {a. c}. {r2})
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1/2

1/2

1/2
1

1
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Fig. 2. A CoMC (left) and the finite oMC (right) induced by this CoMC and the
strategy that always allow {a, c}. The observation of a state of the oMC is the pair
composed of the observation of the associated state in the CoMC and of the set of
allowed events that lead to it. Its name is the triple composed of the associated state in
the CoMC, the set of allowed event leading to it and the belief about states that hold
in the CoMC when entering this state. The probability in the induced oMC to loop on
(r0. {a. c}. {r0. q1}) is obtained by dividing the weight T (r0, r0) by the weights T (r0, r0)
and T (r0, r2), thus 1/2. The weight T (r0, r1) is ignored as b is forbidden.

∏n−1
i=0 σ(O(w↓2i+1))(Σi) 6= 0. We have

FpropMσ(µ0)(w) =
PMσ(µ0)({ρ ∈ O−1(w) | ρ ∈ F})

PMσ(µ0)(w)

=

∑
ρ∈O−1(w)|ρ∈F PMσ(µ0)(ρ)∑
ρ∈O−1(w) PMσ(µ0)(ρ)

=

∑
ρ=s0Σ0...sn∈O−1(w)|ρ∈F

∏n−1
i=0 σ(O(w↓2i+1))(Σi)p(si+1 | si, Σi)∑

ρ=s0Σ0...sn∈O−1(w)

∏n−1
i=0 σ(O(w↓2i+1))(Σi)p(si+1 | si, Σi)

=

∑
ρ=s0Σ0...sn∈O−1(w)|ρ∈F

∏n−1
i=0 p(si+1 | si, Σi)∑

ρ=s0Σ0...sn∈O−1(w)

∏n−1
i=0 p(si+1 | si, Σi)

which is independent of σ, therefore for any strategy σ′ such that at least one
path of Mσ′(µ0) produces w, FpropMσ′ (µ0)(w) = FpropMσ(µ0)(w). ut

3.2 Solving AA-diagnosability for CoMCs

While accurate approximate diagnosability is simpler than exact diagnosability
for oMC (PTIME vs PSPACE)[7, 6], for CoMCs this difference disappears and
both problems are EXPTIME-complete. The EXPTIME-completeness of exact
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diagnosis for CoMC was established in [5]. We will devote this section to the
proof of the following theorem:

Theorem 4. The AA-diagnosability problem over CoMCs is EXPTIME-complete.

First, the hardness is obtained directly by applying the proof of Proposition
3 of [5]. This proof relies on a reduction from safety games with imperfect
information [9] to establish EXPTIME-hardness of an exact notion of diagnosability.
Their proof also applies to AA-diagnosability as, in the system they build, a
faulty path is exactly diagnosable iff it is AA-diagnosable.

Proposition 4. The AA-diagnosability problem over CoMCs is EXPTIME-hard.

The most important step to solve AA-diagnosability for CoMC is to develop a
good understanding on the strategies optimising AA-disclosure. For starters, with
a straightforward adaptation of a proof of [15], we show that one can consider
deterministic strategies only.

Lemma 2. Given M a CoMC, µ0 an initial distribution, SF ⊆ S and σ a strategy,
there exists a deterministic strategy σ′ such that DiscAA(Mσ(µ0)) = PMσ(µ0)(F∞)

implies DiscAA(Mσ′(µ0)) = PMσ′ (µ0)(F∞).

Proof. In the proof of Lemma 1 of [15], the authors show that a randomised
‘observation based’ strategy can be seen as an average over a family of determin-
istic ‘observation based’ strategies3. A consequence of their equation (2) in our
framework is the following: given a strategy σ, for every set of path E, there exists
a deterministic strategy σdet such that (a) Path(Mσdet(µ0)) ⊆ Path(Mσ(µ0)) and
(b) PMσdet (µ0)(E) ≥ PMσ(µ0)(E). Using this result with the appropriate set E we

will show that if Mσ(µ0) is AA-diagnosable then Mσdet(µ0) is AA-diagnosable.
We define Eσ = VMσ(µ0) ∪ (Path(Mσ(µ0)) \ F∞) which are the set of infinite

σ-compatible paths that are either correct or AA-disclosing. Let σdet be the
strategy obtained by applying the result of [15] on the set Eσ. Suppose Mσ(µ0)
is AA-diagnosable. By definition, this is equivalent to PMσ(µ0)(Eσ) = 1. Due to
(b), this implies that PMσdet (µ0)(Eσ) = 1 too. Moreover VMσdet (µ0) = VMσ(µ0) ∩
Path(Mσdet(µ0)), thanks to Lemma 1 and (a). Thus

Eσ = VMσdet (µ0) ∪ (VMσ(µ0) \ Path(Mσdet(µ0)) ∪ (Path(Mσ(µ0)) \ F∞)

= Eσdet ∪ (VMσ(µ0) ∪ (Path(Mσ(µ0)) \ F∞) \ Path(Mσdet(µ0))

where Eσdet = VMσdet (µ0) ∪ (Path(Mσdet(µ0)) \ F∞).

Finally, PMσdet (µ0)(VMσ(µ0) ∪ (Path(Mσ(µ0)) \ F∞) \ Path(Mσdet(µ0)) = 0 as

no path of this set is σdet-compatible. Therefore PMσdet (µ0)(Eσdet) = 1 which

implies that Mσdet(µ0) is AA-diagnosable. ut

We can further restrict the strategies by limiting ourselves to belief-based
strategy. This is far from an intuitive result. Indeed, while the AA-diagnosability

3 In our framework, by definition, every strategy is ‘observation based’.
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of an oMC depends heavily on the exact values of the probabilities in the oMC,
this result implies that the control only needs to remember the set of states
potentially reached with a given observation sequence, not the probabilities with
which one is in each state. Remark though that the choice made by the strategy
in each belief depends on the probabilities.

Lemma 3. Given M a CoMC, µ0 an initial distribution, SF ⊆ S and σ a
deterministic strategy, there exists a deterministic belief based strategy σ′ such
that DiscAA(Mσ(µ0)) = PMσ(µ0)(F∞) implies DiscAA(Mσ′(µ0)) = PMσ′ (µ0)(F∞).

Proof. Let M be a CoMC, µ0 be an initial distribution and σ be a deterministic
strategy such that Mσ(µ0) is AA-diagnosable. We define a belief based strategy
σ′ from σ in the following way. Let ρ ∈ fPath(Mσ(µ0)). We define by Eρ the set
of finite path producing the same belief as ρ, i.e. Eρ = {ρ′ ∈ fPath(Mσ(µ0)) |
BM(µ0)(O(ρ′)) = BM(µ0)(O(ρ))}. We define σ′(BM(µ0)(O(ρ))) =

⋃
ρ′∈Eρ σ(O(ρ′)).

In other words, in a given belief, σ′ allows anything that σ allowed at least once
in this belief. Let us show that Mσ′(µ0) is AA-diagnosable.

Let two states q = (s,Σ•, B) ∈ SF and q′ = (s′, Σ•, B) ∈ S \ SF belonging to
a BSCC of Mσ′(µ0) and reached by two finite paths ρ and ρ′ of fPath(Mσ′(µ0))
with O(ρ) = O(ρ′). We will show that d(Mσ′(1q),Mσ′(1q′)) = 1 using the
characterisation given in Proposition 2. More precisely, for any observations
sequence w ∈ Σ∗, and any pair of distributions on the set of states reached from
q and from q′ after observing w, we consider the probabilistic language generated
by similar distributions in Mσ (i.e. distributions giving the same weight to the
states of the original CoMC M) and rely on the fact that Mσ is AA-diagnosable
to show that the generated languages are different. This implies the distance is 1
thanks to Proposition 2.

Let w ∈ Σ∗ such that PMσ′ (1q)(w) > 0 and PMσ′ (1q′ )(w) > 0, we denote by

Bw, Bq and Bq′ the beliefs reached after observing w from the beliefs B, {q}
and {q′} respectively, let two distributions µ′1 and µ′2 such that Supp(µ′1) ⊆ Bq,
Supp(µ′2) ⊆ Bq′ . As σ′ does not allow events that are never allowed by σ
in the same belief, there exists an observation sequence wσ ∈ Σ∗ such that
PMσ(µ0)(wσ) > 0 and the belief reached in M(µ0) after a path of observation wσ
from the initial distribution is Bw, i.e. BM(µ0)(wσ) = Bw.

We can thus define initial distributions µ1 and µ2 on the set of states reached
after observing wσ in Mσ mimicking the distributions µ′1 and µ′2 (i.e. for every
state q0 = (s0, Σ0, Bw) of Mσ′(µ0), we select some q1, state of Mσ(µ0) associated
to a σ-compatible paths ρ that ends in s0 and such that O(ρ) = wσ, and we
set for i ∈ {1, 2}, µ′i(q0) = µ1(q1)). From Proposition 3 and Proposition 2, there
exists a word wd such that PMσ(µ1)(wd) 6= PMσ(µ2)(wd). This implies that there
exists a word w′d such that PMσ′ (µ′1)(w

′
d) 6= PMσ′ (µ′2)(w

′
d). Indeed, let E be the

set of observation sequences of the form w′a where w′ is a strict prefix of wd,
a ∈ Σ, PMσ′ (µ′1)(w

′a) > 0 and PMσ(µ1)(w
′a) = 0. If PMσ′ (µ′1)(E) 6= PMσ′ (µ′2)(E),
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this implies our result. Otherwise, by construction of the strategy σ′ we have:

PMσ′ (µ′1)(wd) =PMσ(µ1)(wd)× (1− PMσ′ (µ′1)(E))

6=PMσ(µ2)(wd)× (1− PMσ′ (µ′1)(E))

=PMσ(µ2)(wd)× (1− PMσ′ (µ′2)(E))

=PMσ′ (µ′2)(wd),

in which case we can choose w′d = wd. As this holds for any w ∈ Σ∗ and pair of dis-
tributions µ′1 and µ′2, according to Proposition 2 we have d(Mσ′(1q),Mσ′(1q′)) =
1. From Theorem 2, we can thus deduce that Mσ′(µ0) is AA-diagnosable. There-
fore belief-based strategies are sufficient to decide AA-diagnosability. ut

A naive NEXPTIME algorithm can be obtained from these two lemmas: we
guess a deterministic belief-based strategy then verify AA-diagnosability of the
exponential oMC generated by the CoMC and the strategy. In the following
proposition, we show how to efficiently build a good belief-based strategy, which
gives us an EXPTIME algorithm.

Proposition 5. The AA-diagnosability problem over CoMCs is in EXPTIME.

Proof. Let M be a CoMC and µ0 be an initial distribution. This proof is done in
two steps.

1. We show that, given two deterministic belief based strategies σ1 and σ2 such
that σ1 is less restrictive than σ2 and a state q belonging to a BSCC of both
Mσ1(µ0) and Mσ2(µ0), then if the paths of Mσ2(µ0) that visits q are almost
surely AA-disclosing then so are the paths of Mσ1(µ0) that visits q. In other
words, within a BSCC, the least restrictive a strategy is, the better it is for
the purpose of diagnosis.

2. Thanks to the result obtained in the first step, we efficiently build a strategy
in the form of a greatest fixed point: we start by the most permissive strategy
and iteratively restrict it to prune the BSCC that cause the strategy not to
achieve AA-diagnosability.

Let σ and σ′ be two deterministic belief-based strategies such that for any
belief B of M σ(B) ⊆ σ′(B). Let q be a faulty state associated to a belief B and
belonging to a BSCC of both Mσ(µ0) and Mσ′(µ0). Assume that there exists a
positive measure of paths in Mσ′(µ0) that visit q and that are not associated
to an AA-disclosing observation sequence. Defining B′ = (B \ SF) ∪ {q}, this is
equivalent to saying that the CoMC Mσ′(µ1), where µ1 is an initial distribution
of support B′, is not AA-diagnosable. Therefore we can use the characterisation
of Theorem 2. Without loss of generality, as q belongs to a BSCC, we can
assume the pair of states given by the characterisation is (q, q′) where q′ 6∈ SF,
is associated to the belief B, belongs to a BSCC of Mσ′(µ1) and is such that
d(Mσ′(1q),Mσ′(1q′)) < 1. Let w, π1 and π2 be the observation sequence and
the two distributions obtained by applying Proposition 2 on the pair of CoMC
(Mσ′(1q),Mσ′(1q′)). Let q′′ 6∈ SF be a state belonging to a BSCC of Mσ(µ1)
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reachable from q′ by a σ-compatible path with observation sequence ww′. Let
π′1 and π′2 be the distribution obtained after observing w′ starting in π1 and
π2. As ∀v ∈ Σ∗,PMσ′ (π1)(v) = PMσ′ (π2)(v), we also have ∀v ∈ Σ∗,PMσ′ (π′1)(v) =
PMσ′ (π′2)(v). This implies that ∀v ∈ Σ∗,PMσ(π′1)(v) = PMσ(π′2)(v). Indeed, given
v ∈ Σ∗, we have

PMσ(π′1)(v) =
∑

ρ∈O−1(v)

PMσ(π′1)(ρ)

=
∑

ρ=s0Σ0...sn∈O−1(v)

π′1(s0)

n−1∏
i=0

σ(O(v↓2i+1))(Σi)p(si+1 | si, Σi)

=

(
n−1∏
i=0

σ(O(v↓2i+1))(Σi)

) ∑
ρ=s0Σ0...sn∈O−1(v)

π′1(s0)

n−1∏
i=0

T (si, si+1)∑
s′′,O(s′′)∈Σi T (si, s′′)

=

(
n−1∏
i=0

σ(O(v↓2i+1))(Σi)

) ∑
ρ=s0Σ0...sn∈O−1(v)

π′2(s0)

n−1∏
i=0

T (si, si+1)∑
s′′,O(s′′)∈Σi T (si, s′′)

= PMσ(π′2)(v).

As a consequence, d(Mσ(1q),Mσ(1q′)) < 1. From Theorem 2, this implies that
Mσ(µ1) is not AA-diagnosable and thus there exists a positive measure of paths in
Mσ(µ0) that visit q and that are not associated to an AA-disclosing observation
sequence. Therefore, having restricted the strategy σ′ did not allow to regain
AA-diagnosability of the paths visiting q. This means that a strategy achieving
AA-diagnosability of the CoMC must ensure that q cannot be reached.

Using this result, we build iteratively the most permissive strategy ensuring
AA-diagnosability. We start with the strategy σ0 allowing everything. Assume
we built the strategy σk such that any less permissive strategy do not ensure
AA-diagnosability. If Mσk(µ0) is not AA-diagnosable, there exists two states
s and s′ associated to the same belief B that satisfies the characterisation of
Theorem 2. W.l.o.g one can assume that both of these states belong to BSCCs of
Mσk(µ0). From our preliminary result, we know that any strategy that contains
the states s and s′ in a BSCC does not ensure AA-diagnosability. As any strategy
less permissive than σk does not ensure AA-diagnosability, we need to restrict
the strategy so that the belief B is not reachable, or that B is not associated
to states belonging to a BSCC anymore. The latter is in fact not sufficient as
Theorem 2 would still apply on the pair of states (s, s′). Thus we build σk+1 as
the most permissive strategy such that Mσk+1

(µ0) does not contain the belief B,
which can easily be done with belief based strategies. This procedure ends when
the strategy σn that is created either is the most permissive strategy ensuring
AA-diagnosability or if one cannot build a strategy removing the problematic
belief. This algorithm is in EXPTIME as every step of the procedure can be done
in exponential time (verification of AA-diagnosability, identification of the pair of
problematic states and creation of the new strategy are all steps that can be done
in EXPTIME) and there is at most exponentially many steps as each one of them
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removes at least one belief from the system, and there are exponentially many
beliefs. Therefore, the AA-diagnosability problem can be solved in EXPTIME. ut

Remark that the above proof builds the strategy ensuring AA-diagnosability
when it exists.

4 Conclusion

This paper considers the accurate approximate notion of disclosure for diag-
nosability. We establish how to decide AA-diagnosability in CoMC and how to
measure the AA-disclosure in oMC. Measuring the AA-disclosure was not devel-
oped for CoMC here as the notion is undecidable (straightforward application of
the undecidability of the emptiness problem for probabilistic automata).

Opacity is a notion that intuitively appears as some kind of dual to diagnos-
ability. The goal of opacity is to make sure some secret paths of the system are not
detected by an observer. Following the idea that some small amount of revealed
secret information is not problematic, this line of research favors a quantitative
approach to the problem, thus closer to the AA-disclosure problem we studied
for oMC. In this endeavour, various measures for the disclosure set have been
introduced [22, 1, 4, 3]. Opacity has been studied in an active framework called
observable Markov decision processes (oMDP) where the controller is deemed
internal to the system and thus makes its choice with more information than just
the observation sequence. This framework is thus not equivalent to the CoMC
model presented in this paper; the strategy is more powerful. As such, while
measuring the disclosure is undecidable (for any disclosure notion) in CoMC,
some positive results were established in oMDP [2]. However, as this work only
considered the exact notion of disclosure, it would be interesting to see if the
approximate approach pushed here could also be applied for oMDP. Moreover,
this framework also makes sense for a study of diagnosability as the control
defined in oMDP can correspond to designing choices of the system.
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A AA-disclosure problem for oMC

Theorem 3. The AA-disclosure problem for finite oMC is PSPACE-complete.

We decompose the proof of the theorem in the two following proposition, each
establishing one direction.

Proposition 6. The AA-disclosure problem for finite oMC is in PSPACE.

Proof. To establish this result, we first build an exponential size oMC which
contains additional information: the set of states the system could be in after
the observation sequence. Then we show that there are two kinds of BSCC in
this new oMC: the ones that are reached by paths that almost surely have an
AA-disclosing observation sequence, and the ones that are reached by paths that
do not correspond to AA-disclosing observation sequences. We can then use the
existing results for the AA-diagnosability problem to determine the status of
each BSCC. Therefore, computing the AA-disclosure of the oMC is equivalent
to computing the probability to reach the “AA-disclosing” BSCC, which can be
done in NC in the size of the oMC, thus giving an overall PSPACE algorithm.

LetM = (S, p,O) be a finite oMC and µ0 be an initial distribution. We build
a new oMC M′ = (S′, p′,O′) which has the same behaviour as M but where the
states are enriched with an additional information (the set of states the system
can be in, given the produced observation sequence):

– S′ = S × 2S ;
– For (s,B), (s′, B′) ∈ S′, p′((s′, B′) | (s,B)) = p(s′ | s) ifB′ = ∪q∈BSupp(p(q))∩

O−1(O(s′)) else, p′((s′, B′) | (s,B)) = 0;
– For (s,B) ∈ S′, O′(s,B) = O(s).

We define the initial distribution µ′0 for M′ by µ′0(s,Supp(µ0) ∩ O−1(O(s))) =
µ0(s) for all s ∈ S. There is a one-to-one correspondence between the paths of
M(µ0) and M′(µ′0): every path ρ = s0s1 · · · sn of M(µ0) is associated to an
unique path ρ′ = (s0, B0)(s1, B1) · · · (sn, Bn) with O(ρ) = O(ρ′), PM(µ0)(ρ) =
PM′(µ′0)(ρ

′) and Bn contains the set of states of S that can be reached with a
path of observation O(ρ). Due to the latter property, Bn only depends on O(ρ)
and is called the belief associated to O(ρ).

Let (s,B) ∈ S′ such that s ∈ SF and (s,B) belongs to a BSCC of M′. We
claim that either for every path ρ ending in (s,B), P({ρ′ ∈ Path(M′(µ′0)) |
ρ � ρ′ ∧ O(ρ′) ∈ DAA}) = 0 or for every path ρ ending in (s,B), P({ρ′ ∈
Path(M′(µ′0)) | ρ � ρ′ ∧ O(ρ′) ∈ DAA}) = P(ρ). In other words, there are two
categories of BSCC composed of faulty states: the good ones, that almost surely
accurate approximately disclose the fault, and the bad ones that do not accurate
approximately disclose the fault at all. Moreover, a BSCC containing the state
(s,B) do not disclose the fault at all iff there exists a state s′ ∈ B such that s′

belongs to a BSCC of M, s′ 6∈ SF and d(M(1s),M(1s′)) < 1.
Let (s,B) be a state belonging to a BSCC of M′. Assume that for all s′ ∈ B

such that s′ belongs to a BSCC ofM and s′ 6∈ SF we have d(M(1s),M(1s′)) = 1.
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We denote B′ = (B \ SF) ∪ {s}, and define M′′ by removing the path leading
to a faulty state (aka, a path either starts faulty or forever remain correct).
Then as s belongs to a BSCC of M, we can directly use Theorem 2 to obtain
that for any initial distribution µ1 of support B′, we have that M′′(µ1) is AA-
diagnosable. As the limitation to the states of B \ B′ and the transformation
from M to M′′ can only increase the failure proportion, this ensures that
P({ρ′ ∈ Path(M′(µ′0)) | ρ � ρ′ ∧ O(ρ′) ∈ DiscAA}) = P(ρ).

Conversely, if there exists a state s′ ∈ B such that s′ belongs to a BSCC of B,
s′ 6∈ SF and d(M(1s),M(1s′)) < 1, then one can rely on the proof of Lemma A
of [8] to obtain the result. For the sake of pedagogy, we present the proof here
in the simpler case where B does not contain any faulty state beside s. Using
Proposition 2 and the correspondence between M and M′, one deduces that
there exists ρ(s,B) ∈ fPath(M(1(s,B))) and α > 0 such that for all w ∈ Σ∗ with
O(ρ) ≤ w

PM′(1(s,B))({ρ
′ ∈ fPath(M′(1(s,B))) | ρ(s,B) � ρ′ ∧ O(ρ′) = w}) (1)

≤ αPM′(1(s′,B))
({ρ′ ∈ fPath(M′(1(s′,B))) | O(ρ′) = w}). (2)

Therefore, for all w ∈ Σ∗ and initial distribution µ1 of support B we have:

FpropM′(µ1)(w) ≤
PM′(1(s,B))(w)

PM′(1(s,B))(w) + µ1(s′)
µ1(s)

PM′(1(s′,B))
(w)

(3)

≤

εw +
∑

ρ|O(ρρ(s,B))≤w

αPM′(1(s,B))(ρ)

PM′(1(s,B))(ρ(s,B))
PM′(1(s′,B))

(wρ)

PM′(1(s,B))(w) + µ1(s′)
µ1(s)

PM′(1(s′,B))
(w)

(4)

where wρ is such that w = O(ρ)wρ, the first term εw = PM′(1(s,B))({ρ ∈
fPath(M(1(s,B)) |6 ∃ρ1, ρ2, ρ = ρ1ρ(s,B)ρ2 ∧O(ρ) = w}) is the probability of the
set of paths with observation w that do not contain the infix ρ(s,B) and the second
term relies on the bound from Equation 2 to bound the probability of every
other paths. As with probability 1, a path of M′(1(s,B)) visits (s,B) infinitely
often, it will almost surely contain a ρ(s,B) subpath, more precisely: the value

εw
PM′(1(s,B))

(w) almost surely converges to 0 when |w| diverges to∞. Let w ∈ Σω, if

FpropM′(µ1)(w↓n)
n−→∞−−−−→ 1 then, for all ρ such that O(ρρ(s,B)) ≤ w we have that

PM′(1
(s′,B)

)(w
ρ
↓n)

PM′(1(s,B))
(w↓n)

converges to 0, thus, due to Equation 4, εw↓n does not converge

to 0, which can only happen with probability 0. Therefore FpropM′(µ1)(w↓n)
almost surely does not converge to 1. This implies that P{ρ′ ∈ Path(M′(µ′0)) |
ρ � ρ′ ∧ O(ρ′) ∈ DAA} = 0.

This result establishes that the BSCC of M′ are partitionned between the
good ones that accurately approximately and almost surely disclose the fault and
the bad ones that do not accurately approximately disclose it at all. Moreover,
given a state (s0, B0) belonging to a BSCC of M′, if there exists a state s′0 ∈ B0

such that s′0 belongs to a BSCC of B, s′0 6∈ SF and d(M(1s0),M(1s′0)) < 1,
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then for any state (s1, B1) belonging to the same BSCC, one can find a state
s′1 ∈ B1 satisfying a similar property with respect to s1. In other words, for every
BSCC of M′, we only need to check a single state (s,B) of the BSCC to identify
whether the BSCC is disclosing or not. Furthermore, this check can be done by
testing the distance 1 between copies of M starting in s and copies starting in
some of the states in B. There is thus at most linearly many tests to do, each of
which can be done in polynomial time in the size of M.

Therefore, one can obtain the value of DiscAA(M′(µ′0)) by computing the
probability to reach the good BSCC, which is known to be possible in PTIME in the
size ofM′. In fact, as computing this probability amount to solve a linear system
of equations, this can even be done in NC [11, 21]. The oMCM′ being exponential
in the size ofM, and as NC blown up to the exponential is equal to PSPACE [10],
this yields a PSPACE algorithm. As DiscAA(M(µ0)) = DiscAA(M′(µ′0)), this
allows us to solve the AA-disclosure problem. ut

Proposition 7. The AA-disclosure problem for finite oMC is PSPACE-hard.

Proof. We now establish the hardness by reducing the universality problem
for non-deterministic finite automaton (NFA), which is known to be PSPACE-
complete [19].

An NFA is a tuple A = (Q,Σ, T, q0, F ) where Q is the set of states, q0
is the initial state, F is the set of accepting states, Σ is the alphabet and
T ∈ Q × Σ × Q is the transition function. An NFA is universal if for all w =
a1a2 . . . an ∈ Σn, there exists a path q0a1q1a2 . . . qn such that qn ∈ F and for all
1 ≤ i ≤ n, (qi−1, ai, qi) ∈ T .

A :

q2

Â :

a

(q2. a)

b

(q2. b)
a, b

1
4

1
4

Fig. 3. From NFA A to incomplete oMC Â. The label next to the state is its name.
We will not always display the state’s name so as not to overload the figure.

Let A = (Q,Σ, T, q0, F ) be an NFA. W.l.o.g. we can assume that F = Q and
Σ = {a, b}. Our first step is to push the observations onto the states (as shown
in Figure 3). From A we define the incomplete oMC Â = (SA, pA, OA) and the
initial distribution µA0 such that:

– SA = Q×Σ;
– for (q, c), (q′, d) ∈ SA, if (q, d, q′) ∈ T , then pA((q′, d) | (q, c)) = 1

|SA|+1 , else

pA((q′, d) | (q, c)) = 0;
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– for (q, c) ∈ SA, OA(q, c) = c;
– for (q′, d) ∈ SA, if (q0, d, q

′) ∈ T , then µA0 (q′, d) = 1
|SA|+1 , else µA0 (q′, d) = 0.

This oMC is incomplete as none of the distributions µA0 and pA(· | s) (for s ∈ SA)
sum to 1. We now build the oMC M = (S, p,O) represented in Figure 4 where

– S = SA ∪ {s], fa, fb, f]};
– given s, s′ ∈ SA, p(s′ | s) = pA(s′ | s), p(s] | s) = 1 −

∑
s′∈SA p(s

′ | s), for
h ∈ {fa, fb} and g ∈ {fa, fb, f]}, p(g | h) = 1/3 and p(f] | f]) = p(s] | s]) = 1;

– for s ∈ SA, O(s) = OA(s), O(s]) = O(f]) = ], O(fa) = a and O(fb) = b.

We also define µ0 as µ0(s) = µA0 (s) for s ∈ SA and µ0(fa) = µ0(fb) =
1−

∑
s∈SA

µ0(s)

2 .

a

fa

b

fb

]

f]

s

]

s]

1

1/31/3

1/3

1/3

1/3

1/3
1

Â

Fig. 4. A reduction for PSPACE-hardness of the AA-disclosure problem.

Choosing SF = {f]}, let us show that A is not universal iff DiscAA(M(µ0)) >
0.

Suppose first that A is not universal. There thus exists a word w ∈ Σ∗ such
that no path starting in SA has observation sequence w. As there exists one faulty
path ρ (starting in either fa or fb) associated to w], we have FpropM(µ0)(w]) = 1.

Therefore DiscAA(M(µ0)) ≥ PM(µ0)(ρ) > 0.
Conversely, assume that A is universal. Let ρ be a path ending in f] with

observation sequence O(ρ) = w] for some w ∈ Σ∗. As A is universal, there
exists a finite path ρ′ in Â with observation sequence w. As for every state s
of Â, p(s] | s) > 0, ρ′ can be extended into a finite path ρ′′ ending in s] with
observation w]. Thus, FpropM(µ0)(w]) < 1. Moreover, every path ending with
a ] remains with probability 1 in either s] or f], due to this for every k ≥ 2,
FpropM(µ0)(w]

k) = FpropM(µ0)(w]). Therefore, w]ω 6∈ DAA. This implies that no
infinite path visiting f] corresponds to an AA-disclosing observation sequence. f]
being the only faulty state, DiscAA(M(µ0)) = 0. ut


