10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Parametric disjunctive timed networks

Etienne André &
Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, Villetaneuse, France
Institut universitaire de France (IUF), France

Swen Jacobs &
CISPA Helmholtz Center for Information Security, Germany

Engel Lefaucheux &
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

—— Abstract

We consider distributed systems with an arbitrary number of processes, modelled by timed automata

that communicate through location guards: a process can take a guarded transition if at least
one other process is in a given location. In this work, we introduce parametric disjunctive timed
networks, where each timed automaton may contain timing parameters, i.e., unknown constants. We
investigate two problems: deciding the emptiness of the set of parameter valuations for which 1) a
given location is reachable for at least one process (local property), and 2) a global state is reachable
where all processes are in a given location (global property). Our main positive result is that the
first problem is decidable for networks of processes with a single clock and without invariants;
this result holds for arbitrarily many timing parameters—a setting with few known decidability
results. However, it becomes undecidable when invariants are allowed, or when considering global
properties, even for systems with a single parameter. This highlights the significant expressive power
of invariants in these networks. Additionally, we exhibit further decidable subclasses by restraining
the syntax of guards and invariants.

2012 ACM Subject Classification Software and its engineering — Model checking
Keywords and phrases parametrised verification, parametric timed automata

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Parametrised verification [2, 6] consists in verifying a system’s behaviour across all possible
configurations of a certain parameter, such as the number of processes. It is most commonly
used in the context of networks of identical finite-state processes, and it involves proving
that a property holds for any number of processes. This type of verification is crucial for
distributed systems, where an arbitrary number of identical agents may be interacting, and
ensures that system correctness is maintained no matter the scale of the system.

When timing constraints are involved, more powerful formalisms are needed. Timed
automata (TAs) [7] extend finite-state automata with clocks (measuring the time elapsing,
and constraining the way to remain in locations or to take transitions), and offer a powerful
framework for the verification of real-time systems. Clock constraints are used to constrain
the time to remain in a location (“invariant”) or to take a transition (“guard”).

Several works consider parametrised verification for networks of timed automata [5,
4, 1, 3], showing that it quickly hits undecidability, notably when multiple clocks are
involved. Decidability in the presence of multiple clocks can be preserved by restricting the
communication between processes, e.g., to communication via location guards: a process can
take a transition guarded by a location £ if at least one other process currently occupies £. In
disjunctive timed networks, where identical processes communicate via such location guards,
local reachability and safety properties can be decided for any number of clocks [32, 12], even
in the presence of invariants [13].

? Etienne André, Sw.en Jacobs and Engel Lefaucheux;
37 icensed under Creative Commons License CC-BY 4.0
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://lipn.univ-paris13.fr/~andre/
https://orcid.org/0000-0001-8473-9555
https://swenjacobs.github.io
https://orcid.org/0000-0002-9051-4050
https://elefauch.github.io
https://orcid.org/0000-0003-0875-300X
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

Parametric disjunctive timed networks

When timing constants are not known with full precision (or completely unknown, e.g.,
at the beginning of the design phase), timed automata may become impractical. Parametric
timed automata (PTAs) [8] address this issue by allowing the modelling and verification of
real-time systems with unknown or variable timing constraints modelled as timing parameters.
This flexibility enables the analysis of system behaviour across a range of parameter valuations,
ensuring correctness under diverse conditions and facilitating optimization of parameters.

Common decision problems for parametric timed automata also quickly hit undecidability:
emptiness of the parameter valuations set for which a given location is reachable (“reachability-
emptiness”), for a single PTA, is undecidable with as few as 3 clocks and a single timing
parameter (see [9] for a survey).

Contributions

In this paper, we address the verification of systems with unknown timing constants over an
arbitrary number of processes. In that sense, this parametrised parametric timed setting
can be seen as having parameters in two dimensions: timing parameters, and number of
processes. We introduce parametric disjunctive timed networks (PDTNs) as networks of
identical parametric timed processes resembling PTAs, and communicating via location
guards. A combination of two types of parameters appears natural, especially when designing
and verifying communication protocols. These protocols must function regardless of the
number of participants (hence the parametric size of networks), while timing parameters
allow designers to adjust critical time constraints in each process during early stages of
development, where timing is of paramount importance.

Motivating example. We consider an example inspired by applications in the verification
of asynchronous programs [21, 13]. In this setting, processes (or threads) can be “posted”
at runtime to solve a task, and will terminate upon completing the task. Our example,
depicted in Figure 1, features one clock x per process; symbols o; are transition labels of
the automaton. An unbounded number of processes start in the initial location init. In the
inner loop, a process can move to location listen in order to see whether an input channel
carries data. Once it determines that this is the case (in our example this always happens
after some time), it moves to location post, which gives the command to post a process that
actually reads the data, and then can return to init. In the outer loop, if there is a process
that gives the command to read data, i.e., a process that is in post, then another process can
accept that command and move to reading. After reading for some time, the process will
either determine that all the data has been read and move to done, or it will timeout and
move to post to ask another process to carry on reading. However, this scheme may run into
an error if there are processes in done and reading at the same time, modelled by a transition
from reading to error that can only be taken if done is occupied. The time to move to error is
parametric, and should be greater than the (unknown) duration p. A natural problem is to
identify valuations of p for which error is unreachable regardless of the number of processes.

Problems. We focus here on the parametrised reachability-emptiness problem: decide the
emptiness of the set of timing parameter valuations for which there exists a number of
processes such that a given configuration is reachable.

We consider both local properties (reachability condition involving one process), and
global properties (which can typically express the absence of deadlocks, or the fact that all
processes must reach a given location).

We also distinguish the presence or the absence of invariants—and we will see that this
makes a critical difference in decidability.

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

E. André, S. Jacobs and E. Lefaucheux

o7

<1 - o <12

Figure 1 Asynchronous data read example (variation from [13])

In this paper, we prove several results regarding parametrised reachability-emptiness:

undecidability of local properties for PDTNs with 1 clock, 1 parameter, with invariants

(Section 5.2).

undecidability of global properties for PDTNs with 1 clock, 1 parameter, with or without

invariants (Section 5.3).

decidability for fully parametric PDTNs with 1 parameter (Section 6.1);

decidability for PDTNs when parameters are partitioned into lower-bound and upper-

bound parameters (Section 6.2);

decidability of local properties for PDTNs with 1 clock, arbitrarily many parameters,

without invariants (Section 6.3).

The most surprising result emphasizes the high expressive power of invariants (something
which has no impact in single PTAs): local properties in PDTNs are decidable without but
become undecidable in their presence, for only 1 clock. In addition, both local and global
properties are undecidable with invariants for a single clock and a single parameter—a setting
decidable in the context of PTAs taken in isolation: that is to say, while the communication
primitive is weak, it is sufficiently expressive to encode models such a 2-counter machines.
We also note that local properties in 1-clock PDTNs are decidable for an unbounded number
of timing parameters.

Additionally, both as a proof ingredient and as an interesting result per se, we show in
Section 5.1 that the reachability-emptiness problem is undecidable for 1 clock, 1 parameter,
with and without invariants and any a priori fixed number (> 3) of processes—even though
the parametrised version of this problem, i.e., for any (non a priori fixed) number of processes,
is decidable.

Related work. The concept of identical processes in a timed setting was mainly addressed
in networks of processes that either communicate via k-wise synchronization [5, 4, 3] or via
location guards [32, 12, 13]. The former model is equivalent to a variant of timed Petri
nets [30, 28, 22, 17], whereas the latter would be equivalent to a form of timed Petri nets
restricted to immediate observation steps (as in [20, 31]), which however have not been
studied separately to the best of our knowledge.

Very few works study decidability results when combining two types of parameters, i.e.,
discrete (number of processes) and continuous (timing parameters). In [18, 27], security pro-
tocols are studied with unknown timing constants, and an unbounded number of participants.
However, the focus is not on decidability, and the general setting is undecidable. In [14],
action parameters (that can be seen as Boolean variables) and continuous timing parameters
are combined (only linearly though) in an extension of PTAs; the mere emptiness of the sets

23:3

CVIT 2016

23:4

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Parametric disjunctive timed networks

of action and timing parameters for which a location is reachable is undecidable. In contrast,
we exhibit in this work some decidable cases.

The closest work to ours, and presumably the only one to consider timing parameters in
the setting of parametrised verification, is in [11] where parametric timed broadcast protocols
(PTBPs) are introduced. Our contributions differ in the communication setting: while
we consider location guards, [11] considers broadcast in cliques (in which every message
reaches every process) and in reconfigurable topologies (in which the set of receivers is
chosen non-deterministically). Moreover, in this work we study the power of invariants,
which are absent from [11]. Our decidability results are also significantly better than in [11]:
In [11], parametrised reachability-emptiness (for local properties) is undecidable for PTBPs
composed of general PTAs, even with a single clock and without invariants, both in the
reconfigurable semantics and in the clique semantics. The only decidable subcase (for both
semantics) for reachability-emptiness in [11] is severely restricted with 3 conditions that must
hold simultaneously: a single clock per process, parameters partitioned into lower-bound and
upper-bound parameters, and bounded (possibly rational-valued) parameters—relaxing any
of these conditions leads to undecidability. In contrast, we prove here decidability for general
PDTNs with 1 clock and arbitrarily many parameters, or for parameters partitioned into
lower-bound and upper-bound. Also note that our results do not reuse any proof ingredients
from [11] due to the different communication.

Outline. We recall the necessary material in Section 2. We formalize parametric disjunctive
timed networks in Section 3, and our problem in Section 4. We prove undecidability results
in Section 5 and decidability results in Section 6. We conclude in Section 7.

2 Parametric timed automata

We denote by N,Nsq,Z,R> the sets of non-negative integers, strictly positive integers,
integers, and non-negative reals, respectively. Let < € {<, <, =,>,>}.

Clocks are real-valued variables that all evolve over time at the same rate. Throughout
this paper, we assume a set X = {x1,..., 2y} of clocks. A clock valuation is a function
1 X — Ry, assigning a non-negative value to each clock. We write 0 for the clock valuation
assigning 0 to all clocks. Given R C X, we define the reset of a valuation u, denoted by [u]r,
as follows: [u]r(z) =0 if z € R, and [u]r(z) = u(x) otherwise. Given a constant d € R,
i+ d denotes the valuation s.t. (u + d)(x) = p(z) + d, for all z € X.

A (timing) parameter is an unknown integer-valued constant. Throughout this paper,
we assume a set P = {p1,...,pp} of parameters. A parameter valuation v is a function
v:P— N.

A constraint C' is a conjunction of inequalities over XUIP of the form x >)7, o, 5, @i Xpi+
d, with z € X, p; € P, and o, d € Z. We call d a constant term. Given C, we write p = v(C)
if the expression obtained by replacing each x with p(z) and each p with v(p) in C evaluates
to true. Let ®(XUP) denote the set of constraints over XUP. Let True denote the constraint
made of no inequality, i.e., representing the whole set of clock and parameter valuations.

» Definition 1 (PTA [8]). A PTA A is a tuple A= (X, L, 4y, X,P,I,E), where: 1) ¥ is a
finite set of actions; 2) L is a finite set of locations; 8) £y € L is the initial location; 4) X is
a finite set of clocks; 5) P is a finite set of parameters; 6) I : L — ®(XUTP) is the invariant,
assigning to every ¢ € L a constraint () over XUP; 7)) EC L x ®(XUP) x ¥ x 2X x L is
a finite set of edges T = (£, g, a, R,{') where £,¢' € L are the source and target locations, g is
a constraint (called guard), a € 3, and R C X is a set of clocks to be reset. We say that a
location ¢ does not have an invariant if I(¢) = True.

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

E. André, S. Jacobs and E. Lefaucheux

» Definition 2 (Valuation of a PTA). Given a PTA A and a parameter valuation v, we
denote by v(A) the non-parametric structure where all occurrences of a parameter p; have
been replaced by v(p;). v(A) is a timed automaton.

We recall the concrete semantics of a TA using a timed transition system (TTS).

» Definition 3 (Semantics of a TA). Given a PTA A= (%,L, 4y, X,P,I,E) and a parameter
valuation v, the semantics of v(A) is given by the TTS T4y = (6,50, X UR>q, —), with

L & ={(t,u) € LxRY | piv(I(0)}, s0=(l,0),
2. — consists of the discrete and (continuous) delay transition relations:

a. discrete transitions: (£,) v (€', 1'), if (6,p), (¢, 1) € &, and there exists T =
(4,g9,a,R,l") € E, such that i/ = [u]r, and p = v(g).
b. delay transitions: (¢, u) W (b, +d), with d € Rxo, if ¥d' € [0,d], l,u+d') € &.

d,t
Moreover we write (¢, p) @) (¢, u) for a combination of a delay and a discrete transition

i 3 s (6 g0) S () ().

Given a TA A with concrete semantics ¥ 4, we refer to the states of & as the concrete
states of A. A run of A is an alternating sequence of concrete states of A and pairs of delays
and edges starting from the initial state so of the form (£g, po), (do, 70), (¢1, 1), -+ with

di,T; .
i=0,1,..., 7 € E,d; € R>g and (¢;, u;) (—T>) (i1, pit1). Given a TA A, we say that a
location ¢ is reachable if there exists a state (¢, u) that appears on a run of A.
Reachability-emptiness. Given a PTA A and a location ¢, the reachability-emptiness problem
asks whether the set of parameter valuations v such that ¢ is reachable in v(.A) is empty.

» Definition 4 (L/U-PTA [24]). An L/U-PTA (lower-bound/upper-bound PTA) is a PTA
where P is partitioned into P = P, W Py, where Pr, (resp. Py) denotes lower-bound (resp.
upper-bound) parameters, so that each lower-bound (resp. upper-bound) parameter p; must be
such that, for every constraint © DY | ;0 06 X pi +d, we have: 1) € {<, <} implies
a; <0 (resp. a; >0), and 2) <1 € {>, >} implies a; > 0 (resp. a; <0).

A PTA is fully parametric whenever it has no constant term (apart from 0):

» Definition 5 (Fully parametric PTA [24, Definition 4.6]). A PTA A is fully parametric if
every constraint in A is of the form x> ZlgiSM a; X p;, with p; € P and o; € 7.

Our subsequent undecidability proofs work by reduction from the halting problem for
2-counter machines. A deterministic 2-counter machine (“2CM”) [29] has two non-negative
counters C; and Cs, a finite number of states and a finite number of transitions, which can
be of the form (for [€ {1,2}): i) “when in state q;, increment C; and go to q;”; or %) “when
in state q;, if C; = 0 then go to gy, otherwise decrement C; and go to g;”.

The 2CM starts in state qp with the counters set to 0. The machine follows a deterministic
transition function, meaning for each combination of state and counter conditions, there is ex-
actly one action to take. The halting problem consists in deciding whether some distinguished
state called gpai, can be reached or not. This problem is known to be undecidable [29].

3 Parametric disjunctive timed networks

We extend guarded TAs defined in [12] with timing parameters as in PTAs. We follow the
terminology and use abbreviations from [32, 12].

23:5

CVIT 2016

23:6

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Parametric disjunctive timed networks

» Definition 6 (Guarded Parametric Timed Automaton (gPTA)). A gPTA A is a tuple
A= (X,L,6,X,P I, E), where: 1) ¥ is a finite set of actions; 2) L is a finite set of
locations; 3) £y € L is the initial location; 4) X is a finite set of clocks; 5) P is a finite set
of parameters; 6) I : L — ®(XUP) is the invariant, assigning to every £ € L a constraint
I(¢) (called invariant); 7) E C L x ®(XUP) x (LU{T}) x X x 2% x L is a finite set of
edges T = (¢, 9,7, a, R, {') where £,{' € L are the source and target locations, g is a constraint
(called guard), ~ is the location guard, a € ¥, and R C X is a set of clocks to be reset.

Intuitively, an edge 7 = (¢, 9,7, a, R,¢') € E takes the automaton from location £ to ¢';
7 can only be taken if guard g and location guard ~y are both satisfied, and it resets all clocks
in R. Note that satisfaction of location guards is only meaningful in a network of gPTAs
(defined below). Intuitively, a location guard + is satisfied if it is T or if another automaton
in the network currently occupies location ~.

» Example 7. In Figure 1, the transition to error is guarded both by a guard = > p and by
a location guard [done]. In contrast, the location guard to done is T (and omitted in the
figure), i.e., it can be taken without assumption on the location of other processes.

A gPTA is an L/U-gPTA if parameters are partitioned into lower-bound and upper-bound
parameters (as in Definition 4). A gPTA is fully parametric whenever it has no constant
term (apart from 0) (as in Definition 5).

Recalling the semantics of NTAs. A gPTA with P = () is called a guarded timed automaton
(¢gTA) [12]. Given a gPTA A and a parameter valuation v, we denote by v(A) the non-
parametric structure where all occurrences of a parameter p; have been replaced by v(p;);
v(A) is a gTA.

Let A be a gTA. We denote by A™ the parallel composition A || --- || A of n copies of A,
also called a network of timed automata (NTA) of size n. Each copy of A in the NTA A"
is called a process. A configuration ¢ of an NTA A™ is a tuple ¢ = ((Zl,,ul), ey (Uny un)),
where every (¢;,u;) is a concrete state of A. The semantics of A™ can be defined as a
TTS (€,¢,T), where € denotes the set of all configurations of A™, ¢ is the unique initial
configuration (¢, 0)™, and the transition relation T is the union of the following delay and
discrete transitions:

delay transition ((¢1, 1), ..., (¢n, ftn)) 4 (b1, i1 +d), ..., (bn, pn + d)), with d € Rxo, if
Vie{l,...,n},Vd €[0,d] : p; +d' = I(£;), i.e., we can delay d € R>g units of time if
all clock invariants are satisfied until the end of the delay.

discrete transition ((¢1, 1), ..., (€n, tin)) e, (0, 1h), .-, (€, 1)) for some i €

{1,...,n}if 1) (6, u5) = (€, 1) is a discrete transition' of A with 7= (¢;, 9,7, a, R, (})
for some g, v and R, 2) v =T or £; =~ for some j € {1,...,n}\ {i}, and 3) £} = £; and
Wy = py forall j € {1,...,n}\ {i}.

That is, location guards y are interpreted as disjunctive guards: unless v = T, at least

one of the other processes needs to occupy location v in order for process ¢ to pass this guard.

d, (%, s . oy
We write ¢ ﬂ) ¢ for a delay transition ¢ e ¢ followed by a discrete transition

(4,a) do,(i0,a0) di—1,(i1—1,a1-1)
AARAN 0 L.

¢”. Then, a timed path of A™ is a finite sequence ™ = ¢q
A timed path 7 of A™ is a computation if ¢g = ¢. We say that ¢; is reachable in A™.

L Strictly speaking, (£;, i) — (€}, 115) is a transition of the TA obtained from A by replacing location
guards with T.

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

E. André, S. Jacobs and E. Lefaucheux

We write £ € ¢ if ¢ = ((€1, 1), ..., (ln,) and £ = ¢; for some i € {1,...,n}. We say
that a location £ is reachable in A™ if there exists a reachable configuration ¢ s.t. £ € ¢.

Given a gPTA A, we denote by A"™ the parallel composition A || --- || A of n copies
of A, also called a network of parametric timed automata (NPTA). Given an NPTA A"
and a parameter valuation v, we denote by v(.A™) the non-parametric structure where all
occurrences of a parameter p; have been replaced by v(p;); note that v(A™) is an NTA.

» Definition 8. A given gPTA A induces a parametric disjunctive timed network (PDTN)
A%, defined as the following family of NPTAs: A = {A™ | n € Nyo}.

Given a parametric disjunctive timed network A and a parameter valuation v, (v(A))™
is a disjunctive timed network (DTN) [32].

Given a location £ of a gPTA A, given a parameter valuation v, we say that £ is reachable
in the DTN (v(A))™ if there exists n € N-¢ such that ¢ is reachable in (v(A))".

Subclasses of PDTNs. A PDTN A% induced by a gPTA A is an L/U-PDTN if A is an
L/U-gPTA. Similarly, A% is a fully parametric PDTN if A is a fully parametric gPTA.

4 Problems for parametric disjunctive timed networks

Reachability. In [12], the parametrised reachability problem (PR) consists in deciding

whether, given a gTA A and a location £, there exists n € N such that ¢ is reachable in A™.

Here, we consider a parametric version. The emptiness extension consists in asking whether
the set of timing parameter valuations for which PR holds is empty.

Parameterized reachability-emptiness problem (PR-e):

InpuT: a gPTA A and a location ¢

PROBLEM: Decide the emptiness of the set of timing parameter valuations v for which ¢
is reachable in (v(A))>.

» Example 9. In Figure 1, PR-e with error as target location does not hold: for v(p) = 1,
location error can be reached for > 3 processes.

Without invariants, |L| is a cutoff (i.e., a number of processes above which the reachability
is homogeneous—better cutoffs are known for local properties). Intuitively, this is because,
without invariants, a single process that reaches such a location can stay there and enable
the guard forever. However, with invariants, such a simple cutoff does not work (even in the
absence of timing parameters), since invariants might force a process to leave a location and
lots of different processes might be needed to occupy a location at different points in time.

Global reachability. Global properties refer to the numbers of processes in given locations;
we express these using constraints. Formally, a global reachability property is defined by a
constraint ¢ in the following grammar: p :=#L>1|#L=0| oA p | oV o, where { € L
and #/{ refers to the number of processes in £. Note that the “#¢ = 0” term is responsible
for the “global” nature of such properties, i.e., it must hold for all processes that they are
not in £. The satisfaction of a constraint ¢ by ¢ = ((¢1, 1), ..., (¢n, ftn)) is defined naturally:
cE#L>1ifLlec;c=#L=0if £ ¢ c; and as usual for Boolean combinations. The
parametrised global reachability problem (PGR) consists in deciding whether, given a gTA A
and a global reachability property ¢, there exists n € N such that a configuration ¢ with
¢ = ¢ is reachable in A™. Again, we extend this problem to the emptiness of the set of
timing parameters:

23:7

CVIT 2016

23:8

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Parametric disjunctive timed networks

Parameterized global reachability-emptiness problem (PGR-e):

INPUT: a gPTA A and a global reachability property ¢

PROBLEM: Decide the emptiness of the set of timing parameter valuations v for which a
configuration ¢ with ¢ = ¢ is reachable in (v(A))™.

As special cases, the parametrised global reachability problem includes control-state
reachability (where ¢ is #¢ > 1 for a single location ¢; also expressible as a PR-e problem)
and detection of timelocks that are due to location guards (where ¢ is a disjunction over
conjunctions of the form #¢ > 1 A#6; =0A--- AN#L,, = 0, where £ can only be left through
edges guarded by one of the £y,...,¢,,). We will be particularly interested in the global
property asking whether all processes reach a given final configuration (where ¢ is of the
form #6, =0 A --- A#L, = 0 with m = |L| — 1), sometimes called the TARGET problem [19].

» Example 10. In Figure 1, consider the global property ¢ stating that all processes must
be in error. This property can be written as #init = 0 A #listen = 0 A #post = 0 A #reading =
0 A #done = 0; then, PGR-e holds: no parameter valuation can allow all processes to be
simultaneously in error, whatever the number of processes (this comes from the fact that the
transition to error is guarded by done, so at least one process must be elsewhere).

5 Undecidability results

5.1 Fixed number of processes

We first consider a fixed number of processes; the problem addressed here is therefore not
(yet) parametrised reachability-emptiness, but only reachability-emptiness. These results will
be used as important proof ingredients for the results in Sections 5.2 and 5.3. (Then, the
three results in Section 6 use 3 different proof techniques, completely different from this one.)

5.1.1 Undecidability for 3 processes

In the following, we show that the emptiness of the parameter valuations set for which a
location is reachable in an NPTA made of exactly 3 processes (“reachability-emptiness”) is
undecidable. We first prove the result with invariants (Proposition 13), and then show it also
holds without (Proposition 14). The idea is that invariants are not needed for 3 processes,
but will be necessary when proving undecidability for an unbounded number of processes
(Theorem 16).

Before that, we first reprove a well-known result stating that reachability-emptiness is
undecidable for PTAs with 3 clocks and a single parameter. This result was already proved
(with 3 or more clocks) in, e.g., [8, 16, 15] with various proof flavors. The construction
we introduce in the proof of Lemma 11 will be then reused and modified in the proof of
Proposition 13, which is why we give it first with full details.

» Lemma 11. Reachability-emptiness is undecidable for PTAs with 3 clocks and 1 parameter.

Proof. We reduce from the halting problem of 2-counter machines, which is undecidable [29].
Given a 2CM M, we encode it as a PTA A. Let us describe this encoding in detail, as we
will modify it in the subsequent proofs.

Each state g; of the machine is encoded as a location of the PTA, which we call g;. The
counters are encoded using clocks ¢, x1 and x5 and one integer-valued parameter p, with the
following relations with the values ¢; and ¢y of counters C; and Cy: when ¢ = 0, we have
x1 = ¢1 and x5 = co. This clock encoding is classical for integer-valued parameters, e.g.,
[16, 15]. The parameter typically encodes the maximal value of the counters along a run.

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

E. André, S. Jacobs and E. Lefaucheux

t=pAt>1 <P 11520 =0
t=pAt> (03]
—{/ qo t (yt) 1 T
D — O O 2@
(a) Initial gadget: single PTA version (b) Initial gadget: gadget simulating ¢
sy 1 =0 sy ra=0
4] [46)] [41] [46)]
/L 4 (p1) 0 1 92 1 (2) 0 2
Orleowrlzo@ H[317 0 2 TQ_O@
(c) Initial gadget: gadget simulating x| (d) Imtlal gadget: gadget mmulatmg T2

& [2,,] |
= W
z=0 0

o .x.,..::‘o ;j::::: ::: /f
lg6] @ i

Ghal

h It h 1t T =
=0 = & 0 [qnai]
rx=0

[4¢] 3 2 [ehalt]

(e) Initial gadget: global gadget as a single gPTA (f) Final gadget as a single gPTA

Figure 2 Initial and final gadgets

We initialize the clocks with the gadget in Figure 2a (that also blocks the case where
p < 1). Note that, throughout the paper, we highlight in thick green style the locations of
the PTA corresponding to a state of the 2CM (in contrast with other locations added in the
encoding to maintain the matching between the clock values and the counter values). Since
all clocks are initially 0, in Figure 2a clearly, when in gy with ¢ = 0, we have z; = x93 = 0,
which indeed corresponds to counter values 0.

We now present the gadget encoding the increment instruction of C; in Figure 3a. The
edge from ¢; to ¢;; only serves to clearly indicate the entry in the increment gadget and
is done in 0 time unit. Since every edge is guarded by one equality, there are really only
two timed paths that go through the gadget: one going through ¢;5 and one through £,
depending on the respective order between ¢; and co. Observe that on both timed paths the
gadget lasts exactly p time units (due to the guards and resets of ¢). In addition, xo is reset
exactly when it equals p, hence its value when entering the gadget is identical to its value
when reaching g;. Therefore cy is unchanged. Now, x; is reset when it equals p — 1, hence its
value after the gadget of duration p is incremented by 1 compared to its value when entering
the gadget. Therefore c; is incremented by 1 when reaching g;, as expected.

Let us now consider the 0-test and decrement gadget. Decrement is done similarly to
increment, by replacing guards ;1 = p — 1 with 1 = p + 1, as shown in Figure 4a. In
addition, the O-test is obtained by simply testing that x; = 0 whenever ¢ = 0 (which ensures
that ¢; = 0), which is done on the guard from g¢; to £x1; we then force exactly p time units
to elapse (and reset each clock when it reaches p), which means that the values of the clocks
when leaving the gadget are identical to their value when entering. This is not strictly
speaking needed here, but this time elapsing will simplify the proof of Proposition 13. Dually,
the guard from ¢; to ¢;; ensures that decrement is done only when the counter is not null.

All those gadgets also work for counter Co by swapping x; and .

The actions associated with the edges do not matter; we can assume a single action a on
all edges (omitted in all figures).

23:9

CVIT 2016

23:10

360
361

362

363
364
365
366
367

368

369
370
371
372
373
374
375

376

377

378

379

380

381

382

383
384

385

386
387

388

Parametric disjunctive timed networks

i
72

(a) Increment Ci: single PTA version (b) Increment Ci: gadget simulating ¢

v <1 ——— oy < R

............ el z L2 =0 2= 7

@ @ 4 g @
L ZL'1<*0 &Y 1 < J : éL‘Q%O : o < g

(c) Increment Ci: gadget simulating z1 (d) Increment Ci: gadget simulating 2

Figure 3 Increment gadget

We now prove that the machine halts iff there exists a parameter valuation v such that
v(A) reaches location gnayt. First note that if p <1 the initial gadget cannot be passed, and
so the machine does not halt. Assume p > 1. Consider two cases:

1. either the value of the counters is not bounded (and the 2CM does not halt). Then, for
any parameter valuation, at some point during an increment of, say, C; we will have ¢; > p
and hence x1 > p — 1 when taking the edge from #;5 to ¢;3 and the PTA will be blocked.
Therefore, there exists no parameter valuation for which the PTA can reach gpay.

2. or the value of the counters remains bounded. Let ¢4, be their maximal value. Let us
consider two subcases:

a. either the machine reaches qua)4: in that case, if ¢q; < p, then the PTA valuated
with such parameter valuations correctly simulates the machine, yielding a (unique)
run reaching location gpais-

b. or the machine does not halt. Then again, for a sufficiently large parameter valuation
(i.e., p > Cmaz), the machine is properly simulated, and since the machine does not
halt, then the PTA never reaches gn,1;. For other values of p, the machine will block
at some point in an increment gadget, because p is not large enough and the guard in
the increment gadget cannot be satisfied.

Hence the machine halts iff there exists a parameter valuation v such that v(A) reaches gpalt.
<

» Remark 12. Observe that the proof of Lemma 11 does not require invariants, so undecid-
ability holds without invariants as well—a result known since [8].

We now prove undecidability of the reachability-emptiness in NTA with exactly 3 processes,
by rewriting the 2CM encoding from the former proof.

» Proposition 13. Assume a gPTA A with invariants, with a single clock and a single
parameter, and £ one of its locations. Deciding the emptiness of the set of timing parameter
valuations v for which € is reachable in the NTA U(A)S is undecidable, for all such A.

Proof. The proof main technicality is to rewrite the 2CM encoding of Lemma 11 (made
of a PTA with 3 clocks) using 3 processes with 1 clock each. This is not trivial as the
communication model between our gPTAs is rather weak. Recall that the parameter encodes

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

E. André, S. Jacobs and E. Lefaucheux

1+ 0

(a) O-test and decrement (C1): single PTA version (b) O-test and decrement (C1): gadget simulating ¢

(c) O-test and decrement (C1): gadget simulating 1 (d) O-test and decrement (C1): gadget simulating x2

Figure 4 0-test and decrement gadget

typically the maximal valuation of the counters, and can therefore be arbitrarily large; we
can assume without loss of generality that p > 1. Here, we use three different gPTAs (each
featuring a single clock) synchronizing together; of course, strictly speaking, we can use only
a single structure, but with three “subparts”, and we ensure that each of the 3 processes will
go into a different subpart of the gPTA. This is ensured by the initial gadget in Figure 2e: in
order for process 1 to reach location ¢f, then, due to the location guards, exactly one other
process must have selected the second subpart (location 1) while the third process must
have selected the third subpart (location £2).

Each instruction of the 2CM is encoded into a gadget connected with each other, for each
of the three subparts.

In the rest of the proof, we therefore give, for each instruction of the 2CM, one gadget
for each of the three subparts. Obviously, the (unique) gPTA features a single clock (“z” in
Figure 2e); however, for sake of readability, and for consistency with the encoding given in
Lemma 11, we use clocks with different names in the 3 subparts: that is, the initial gadget in
Figure 2e can be described by three gadgets for the three subparts, given in Figures 2b—2d,
with clock names ¢, 1 and z5. Also recall that from Definition 6, clocks are not shared—they
cannot be read from another process.

Let us consider the increment gadget: the decomposition into three “subparts” (for each
of the three processes) is given in Figures 3b—-3d. An invariant “ - -7 denotes the fact that the
actual invariant is given in the “next” gadget starting from that location. Note that it takes
exactly p time units to move from ¢! to q;-. In addition, the outgoing transition from a given ¢!
is always done in O-time, which is enforced by the invariant ¢ = 0; therefore, the location
guard [q;“] together with the guard zo < p is exactly equivalent to t = p A x5 < p, forcing
the subparts simulating x; and x5 to properly synchronize with the subpart simulating ¢ (or
getting stuck forever in ¢} or £ and blocking the whole computation). Therefore, all three
gadgets synchronize as expected, simulating the original increment gadget in Figure 3a.

23:11

k]

N
To = m qj 2
To 0 @ To < @

CVIT 2016

23:12

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

457

458

459

460

461

Parametric disjunctive timed networks

Let us now consider the O-test and decrement gadget: the decomposition into three
“subparts” (for each of the three processes) is given in Figures 4b—4d. This time, compared to
the former gadgets, we need a better synchronization between gadgets to ensure the correct
branching depending on the value of ¢;. If ¢; = 0, then 21 = 0 when ¢t = 0, and therefore
the process simulating z; can move in O-time to /4, since ¢! is occupied; then, again in
0-time, the process simulating ¢ can move to ¢}, ensuring the correct synchronization between
both processes in the correct branch. Note that, because of the invariant in ¢!, the process
simulating ¢ can only stay 0 time unit in ¢!, and therefore in the process simulating z; the
guard z1 = 0 together with location guard [q§] is exactly equivalent to x1 = 0 At = 0, which
correctly encodes the 0-test. Conversely, if ¢; > 0, then the process simulating x; can move
in O-time to £}, since ¢! is occupied; then, again in O-time, the process simulating ¢ can
move to ¢%. Similarly, the process simulating x5 follows the right branch thanks to location
guards [¢!] and [¢%]. The rest of the decrement part (from i to j) works similarly to the
increment gadget, and the correctness argument is the same. Recall that the rest of the
0-test gadget forces time to elapse for p units, without modifying the value of the three clocks
when leaving the gadget (except of course for z in case of decrement). In particular, in the
gadget simulating z> (Figure 4d), x5 has exactly the same value when entering g7 as when
entering g7 due to location guard [q}], and the intermediate location resetting zo when it is
exactly p; the same holds in the decrement part of the gadget.

In the encoding in the proof of Lemma 11, we showed that the 2CM reaches quay, iff the
location gp,yt is reachable. Here, due to the split of the encoding into three subparts, we
need a final gadget, given in Figure 2f (we assume the clock is reset when entering locations
@ates Qhaye and qﬁalt). In order for the first process to reach the (new) location gpai;, we need
all three processes to reach their respective final location (i.e., ¢f ., q}l1a1t and qﬁalt) together,
which is easily achieved thanks to the various location guards done in 0-time. (Note that this
gadget actually allows all processes to reach qpat; so far, we only need one process to do so.)

Now, first note that the subpart simulating ¢ progresses in its gadgets, only synchronizing
with the two other processes in the initial and final gadgets, as well as in the 0-test and
decrement. In contrast, the two subparts simulating x; and x5 constantly synchronize with
the location guards from the first subpart; while nothing forces them to take these transitions
(notably those guarded by [qﬁ]), failing in taking such a transition will immediately lead to
a timelock due to the invariants and to the fact that the next time such a location guard
will be available is necessarily in p time units. More in detail, recall that any guard location
(location used in a location guard) ¢! in the subpart simulating ¢ has an invariant ¢ = 0, and
only outgoing transitions guarded with ¢t = 0. In addition, at least p time units must elapse
between two guard locations in the subpart simulating ¢: so, due to the invariants in the two
other subparts, failing to take a location guard renders impossible to take it the next time
the first subpart will be in a guard location.

For all these reasons, if one process reaches gpayt, then from Figure 2f, two other processes
must have traversed the two other subparts (simulating x; and x5) correctly, by synchronizing
with the first process. Hence, the 2CM is correctly simulated.

The rest of the reasoning follows the proof of Lemma 11: the 2CM halts iff there exists a
parameter valuation v such that U(A)3 reaches gnalt- |

We show that the absence of invariants does not avoid undecidability, for exactly 3 pro-
cesses.

» Proposition 14. Assume a gPTA A with a single clock and a single parameter, and £ one
of its locations. Deciding the emptiness of the set of timing parameter valuations v for which

462

463

464

465

466

467

468

469

470

471

472

473

475

476

477

478

479

480

481

482

483

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

E. André, S. Jacobs and E. Lefaucheux

¢ is reachable in the NTA U(.A)S is undecidable, even without invariants, for all such A.

Proof sketch. The idea is that, if a process “chooses” to not take some outgoing transition
in the absence of invariants, then the whole computation is stuck, and gpa1; is unreachable.
Put it differently, while the absence of invariants may add some runs, none of these runs can
reach gpait, and the final correctness argument of the proof of Proposition 13 still holds. See
Appendix A.1. <

5.1.2 Undecidability for any fixed number of processes (with or
without invariants)

By modifying the constructions in the proof of Proposition 14, it is easy to show that, for
any fized number of processes n > 3, the reachability-emptiness problem is undecidable, even
without invariants. Note that our construction differs for any n > 3, and hence this does
not prove the undecidability of the parametrised-reachability-emptiness problem (which is
actually decidable without invariants, see Theorem 20).

» Proposition 15. Let A be a gPTA, and ¢ one of its locations. For any n > 3, deciding
the emptiness of the set of timing parameter valuations v for which ¢ is reachable in the
NTA v(A)" is undecidable, even when A contains a single clock and a single parameter
without invariants.

Proof sketch. The idea is to reuse the construction of the proof of Proposition 14, by “killing”
any process except 3 by sending them to “sink” locations. See Appendix A.2. <

5.2 Parameterized reachability-emptiness with invariants

Let us now consider the parametrised reachability-emptiness problem in PDTNs. In the
absence of invariants, the 2CM encoding used in the previous proofs would become incorrect
for a parametric number of processes: recall that we avoided the use of invariants by letting
the system get stuck if a transition is not taken at the “right” time. However, in a system
with a parametric number of processes, a single process that gets stuck will not cause the
whole computation to get stuck, since another process may have taken the transition at
the “right” time. Moreover, a process that gets stuck will ruin the synchronization that
guarantees simulation of the 2CM, since now taking a transition with location guard [g!] will
be possible at any time after the process gets stuck in ¢f. We now prove that undecidability
holds however with invariants.

» Theorem 16. PR-emptiness is undecidable for general PDTNs, even with a single clock
and a single parameter (with invariants).

Proof sketch. We rely on the construction given in the proof of Proposition 13, and we show
that any additional processes will just simulate one of the existing three processes, due to the
presence of invariants. Most importantly, no process can remain “idle” in a location forever,
and therefore the location guards still guarantee that the 2CM is simulated correctly. See
Appendix A.3. <

5.3 Parameterized global reachability-emptiness

We show here that our former constructions can get rid of invariants providing we con-
sider global properties. That is, without invariants, global properties make parametrised
reachability-emptiness undecidable while it is decidable for local properties (see Section 6.3).

23:13

CVIT 2016

23:14

503

504

505
506

507

508

509
510
511
512
513

514

515

516

517

518
519
520
521
522

523

524

525
526
527

528

529

530

531
532
533
534
535
536
537
538
539
540

541

Parametric disjunctive timed networks

» Theorem 17. PGR-emptiness is undecidable for general PDTNs, even with a single clock
and a single parameter, with or without invariants.

Proof sketch. The proof technical idea is that we ask whether all processes can reach the
target location gpa1g, which can only be done if the 2CM was properly simulated. See
Appendix A 4. <

6 Decidability results

We will first show that, for two subclasses of PDTNs; i.e., fully parametric PDTNs with
a single parameter (Section 6.1) and L/U-PDTNs (Section 6.2), deciding PR-emptiness
(resp. PGR~emptiness) is equivalent to checking parametrised reachability (resp. PGR) in a
non-parametric DTN—which is decidable. The third positive result, addressing one clock,
arbitrarily many parameters and no invariants (Section 6.3), is more involved and requires
different techniques.

6.1 Fully parametric PDTNs with a single parameter

» Theorem 18. PR-emptiness (resp. PGR-emptiness) for fully parametric PDTNs with
1 parameter and arbitrarily many clocks is equivalent to PR (resp. PGR) for DTNs.

Proof sketch. The idea is to test the satisfaction of the property on only two non-parametric
DTNs, viz., these valuating the only parameter with 0 and 1. We show that any other
non-zero valuation is equivalent (up to rescaling) to the valuation 1: indeed, without constant
terms in the model (other than 0), multiplying the value of the (unique) parameter by n will
only impact the value of the duration of the runs by n, but will not impact reachability. See
Appendix B.1. <

6.2 L/U-PDTNs with arbitrarily many clocks and parameters

Given d € Z, let vy,q denote the valuation such that for all p € P, v(p) = 0 and for all
p € Py, v(p) = d. We will consider the special valuation vy, strictly speaking, vg,o is not
a proper parameter valuation due to oo, but valuating a PTA with v/, consists in removing
the inequalities involving upper-bound parameters with a positive coefficient.

» Theorem 19. PR-emptiness (resp. PGR-emptiness) for L/U-PDTNs is equivalent to PR
(resp. PGR) for DTNs.

Proof sketch. We first show that networks of L/U-gPTAs are monotonic: that is, given A
an L/U-gPTA and v a parameter valuation, any computation of (v(.A))" is a computation of
(v'(A))", for all v such that upper-bound parameters are larger than or equal to their value
in v and lower-bound parameters are smaller than or equal to their value in v. We then show
that, given ¢ a global reachability property over A, PGR-emptiness does not hold iff ¢ is
satisfied in a configuration reachable in the DTN (vg/5(A))”, as this DTN contains the
behaviours for all parameter valuations, due to the monotonicity. Therefore, deciding PGR-
emptiness for L/U-PDTNs amounts to deciding satisfaction of ¢ in the DTN (v, (A))™; an
additional technicality is necessary to show that if ¢ is satisfied in a configuration reachable
in (vg/e0(A))™, then it is also reachable in (v(A))™ for some concrete (non-co) parameter
valuation v. See Appendix B.2. <

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

E. André, S. Jacobs and E. Lefaucheux

Table 1 Decidability of PR-e and PGR-e for PDTNs with 1 clock (y/ = decidability, x =
undecidability)

Local properties | Global properties
Without invariants | /Theorem 20 x Theorem 17
With invariants X Theorem 16 X

Since PR and PGR can be solved in EXPSPACE and 2-EXPSPACE respectively in
DTNs [13], then solving PR-emptiness and PGR-emptiness can be done with the same
complexities for fully parametric PDTNs with a single parameter and for L/U-PDTNs.

6.3 PDTNs with one clock, arbitrarily many parameters and no
invariants

Our last decidability result closes the gap of Section 5: while PR-emptiness for PDTNs even
with a single clock and one parameter is undecidable for local properties with invariants,
and is undecidable for global properties even without invariants, we show that the problem
becomes decidable for local properties without invariants. This result highlights the power of
invariants in PDTNs.

» Theorem 20. PR-emptiness is decidable for PDTNs with a single clock, arbitrarily many
parameters, and no invariants.

Proof sketch. We use here a completely different construction: we write a formula in the
existential fragment of the first order theory of the integers with addition (a.k.a. Presburger
arithmetic) enhanced with the divisibility operand (a decidable logic [25]), which will include
the computation of the reachable durations of the locations used in guards in parallel to the
reachability of the final location. In order to write this formula, we rely on results relating
affine parametric semi-linear sets (apSl sets), a parametric extension of semi-linear sets, to
durations in a PTA. Solving PR-emptiness then boils down to deciding the truth of the
formula. See Appendix B.3. <

7 Conclusion

We investigated models with uncertainty over timing parameters, and parametrised in
their number of components. We showed that the emptiness of the parameter valuations
set for which a given location is reachable for some number of processes is decidable for
networks with a single clock in each process and arbitrarily many parameters, provided no
invariants are used, and for local properties only; this positive result is tight, in the sense

that adding invariants or considering global properties makes this problem undecidable.

We summarize the results for 1 clock in Table 1. Beside emphasizing the strong power of
invariants and global properties, our results show an interesting fact on the expressive power
of the communication model: while reachability is decidable for PTAs with 1 or 2 clocks and
one parameter [8, 15, 23], it becomes undecidable in our setting with a single parameter. We
exhibited two further decidable subclasses, by restricting the use of the parameters, without
restriction of the number of clocks and parameters.

Perspectives. First, it can be easily shown that our negative results from Section 5 all
hold as well over discrete time. Second, our undecidability results are expressed so far over
integer-valued parameters. While the undecidability of integer-valued parameters implies

23:15

CVIT 2016

23:16

578
579
580
581
582
583
584
585
586
587
588
589

590

Parametric disjunctive timed networks

undecidability for rational-valued parameters, the case of bounded rational-valued parameters
(e.g., in a closed interval) remains open; we conjecture it remains undecidable using a different
encoding of our undecidability proofs. However, we have no hint regarding the extension
of our decidable results (notably Theorem 20), as our proof techniques heavily rely on the
parameter integerness. Whether extending the decidable case of Theorem 20 to two clocks
preserves decidability remains open too.

An interesting future work is the question of the parameter synthesis (for the decidable
cases). That is, beyond deciding the emptiness of the valuations set for which some properties
hold, can we synthesize them?

Finally, considering universal properties is an interesting perspective: this can include
the existence of a parameter valuation for which all numbers of processes satisfy a property
or, conversely, the fact that all parameter valuations are such that some number of processes
satisfies a property.

591

592

593

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

E. André, S. Jacobs and E. Lefaucheux

—— References

1

10

11

12

13

14

15

16

17

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg. Timed lossy channel
systems. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors,
FSTTCS, volume 18 of LIPIcs, pages 374-386. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, 2012. doi:10.4230/LIPICS.FSTTCS.2012.374.

Parosh Aziz Abdulla and Giorgio Delzanno. Parameterized verification. STTT, 18(5):469-473,
2016. doi:10.1007/s10009-016-0424-3.

Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Riccardo
Traverso. Parameterized verification of time-sensitive models of ad hoc network protocols.
TCS, 612:1-22, 2016. doi:10.1016/j.tcs.2015.07.048.

Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. Multi-clock timed networks. In
LiCS, pages 345-354. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.1319629.
Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with many identical
timed processes. TCS, 290(1):241-264, 2003. doi:10.1016/50304-3975(01)00330-9.
Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. Model checking pa-
rameterized systems. In Edmund M Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 685-725. Springer, 2018.
doi:10.1007/978-3-319-10575-8_21.

Rajeev Alur and David L. Dill. A theory of timed automata. TCS, 126(2):183-235, April 1994.
d0i:10.1016/0304-3975(94)90010-8.

Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, STOC, pages 592-601, New
York, NY, USA, 1993. ACM. doi:10.1145/167088.167242.

Etienne André. What’s decidable about parametric timed automata? STTT, 21(2):203-219,
April 2019. doi:10.1007/s10009-017-0467-0.

Etienne André, Johan Arcile, and Engel Lefaucheux. Execution-time opacity problems in
one-clock parametric timed automata. In Siddharth Barman and Stawomir Lasota, editors,
FSTTCS, volume 323 of Leibniz International Proceedings in Informatics (LIPIcs), pages
3:1-3:22. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, December 2024. doi:10.4230/
LIPIcs.FSTTCS.2024.3.

Etienne André, Benoit Delahaye, Paulin Fournier, and Didier Lime. Parametric timed broadcast
protocols. In Constantin Enea and Ruzica Piskac, editors, VM CAI, volume 11388 of LNCS,
pages 491-512. Springer, 2019. doi:10.1007/978-3-030-11245-5_23.

Etienne André, Paul Eichler, Swen Jacobs, and Shyam Lal Karra. Parameterized verification
of disjunctive timed networks. In Rayna Dimitrova and Ori Lahav, editors, VM CAI, volume
14499 of LNCS, pages 124-146. Springer, 2024. doi:10.1007/978-3-031-50524-9_6.
Etienne André, Swen Jacobs, Shyam Lal Karra, and Ocan Sankur. Parameterized verification
of timed networks with clock invariants. Technical Report abs/2408.05190, arXiv, 2024. URL:
https://arxiv.org/abs/2408.05190.

Etienne André, Michal Knapik, Wojciech Penczek, and Laure Petrucci. Controlling actions
and time in parametric timed automata. In Jorg Desel and Alex Yakovlev, editors, ACSD,
pages 45-54. IEEE Computer Society, 2016. doi:10.1109/ACSD.2016.20.

Etienne André, Didier Lime, and Nicolas Markey. Language preservation problems in para-
metric timed automata. LMCS, 16(1), January 2020. doi:10.23638/LMCS-16(1:5)2020.
Nikola Benes, Peter Bezdék, Kim Guldstrand Larsen, and Jiri Srba. Language emptiness of
continuous-time parametric timed automata. In Magntas M. Halldérsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, ICALP, Part II, volume 9135 of LNCS, pages
69-81. Springer, July 2015. doi:10.1007/978-3-662-47666-6_6.

Olaf Burkart and Bernhard Steffen. Composition, decomposition and model checking of
pushdown processes. Nordic Journal of Computing, 2(2):89-125, 1995.

23:17

CVIT 2016

https://doi.org/10.4230/LIPICS.FSTTCS.2012.374
https://doi.org/10.1007/s10009-016-0424-3
https://doi.org/10.1016/j.tcs.2015.07.048
https://doi.org/10.1109/LICS.2004.1319629
https://doi.org/10.1016/S0304-3975(01)00330-9
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://doi.org/10.1007/978-3-030-11245-5_23
https://doi.org/10.1007/978-3-031-50524-9_6
https://arxiv.org/abs/2408.05190
https://doi.org/10.1109/ACSD.2016.20
https://doi.org/10.23638/LMCS-16(1:5)2020
https://doi.org/10.1007/978-3-662-47666-6_6

23:18

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

681

Parametric disjunctive timed networks

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Giorgio Delzanno and Pierre Ganty. Automatic verification of time sensitive cryptographic
protocols. In Kurt Jensen and Andreas Podelski, editors, TACAS, volume 2988 of LNCS,
pages 342-356. Springer, 2004. doi:10.1007/978-3-540-24730-2_27.

Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification of
ad hoc networks. In Paul Gastin and Francois Laroussinie, editors, CONCUR, volume 6269 of
LNCS, pages 313—-327. Springer, 2010. doi:10.1007/978-3-642-15375-4_22.

Javier Esparza, Mikhail A. Raskin, and Chana Weil-Kennedy. Parameterized analysis of
immediate observation Petri nets. In Susanna Donatelli and Stefan Haar, editors, Petri Nets,
volume 11522 of LNCS, pages 365-385. Springer, 2019. doi:10.1007/978-3-030-21571-2_20.
Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs.
ACM Transactions on Programming Languages and Systems, 34(1):6:1-6:48, 2012. doi:
10.1145/2160910.2160915.

Carlo Ghezzi, Dino Mandrioli, Sandro Morasca, and Mauro Pezzé. A unified high-level Petri
net formalism for time-critical systems. TSE, 17(2):160-172, 1991. doi:10.1109/32.67597.
Stefan Goller and Mathieu Hilaire. Reachability in two-parametric timed automata with one pa-
rameter is expspace-complete. T'CS, 68(4):900-985, 2024. doi:10.1007/S00224-023-10121-3.
Thomas Hune, Judi Romijn, Mariélle Stoelinga, and Frits W. Vaandrager. Linear parametric
model checking of timed automata. JLAP, 52-53:183-220, 2002. doi:10.1016/51567-8326 (02)
00037-1.

Antonia Lechner, Joél Ouaknine, and James Worrell. On the complexity of linear arithmetic
with divisibility. In LiCS, pages 667-676. IEEE Computer Society, 2015. doi:10.1109/LICS.
2015.67.

Engel Lefaucheux. When are two parametric semi-linear sets equal? Technical Report
hal-04172593, HAL, 2024. URL: https://inria.hal.science/hal-04172593.

Li Li, Jun Sun, Yang Liu, and Jin Song Dong. Verifying parameterized timed security protocols.
In Nikolaj Bjgrner and Frank S. de Boer, editors, FM, volume 9109 of LNCS, pages 342-359.
Springer, 2015. doi:10.1007/978-3-319-19249-9_22.

Philip Meir Merlin and David J. Farber. Recoverability of communication protocols-implications
of a theoretical study. IEEE Transactions on Communications, 24(9):1036-1043, 1976. doi:
10.1109/TCOM. 1976.1093424.

Marvin L. Minsky. Computation: Finite and infinite machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

Chander Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets.
PhD thesis, Massachusetts Institute of Technology, USA, 1973. URL: http://hdl.handle.
net/1721.1/13739.

Mikhail A. Raskin, Chana Weil-Kennedy, and Javier Esparza. Flatness and complexity of
immediate observation Petri nets. In Igor Konnov and Laura Kovéics, editors, CONCUR,
volume 171 of LIPIcs, pages 45:1-45:19. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
2020. doi:10.4230/LIPIcs.CONCUR.2020.45.

Luca Spalazzi and Francesco Spegni. Parameterized model checking of networks of timed
automata with Boolean guards. T'CS, 813:248-269, 2020. doi:10.1016/j.tcs.2019.12.026.

https://doi.org/10.1007/978-3-540-24730-2_27
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1109/32.67597
https://doi.org/10.1007/S00224-023-10121-3
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/LICS.2015.67
https://doi.org/10.1109/LICS.2015.67
https://doi.org/10.1109/LICS.2015.67
https://inria.hal.science/hal-04172593
https://doi.org/10.1007/978-3-319-19249-9_22
https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1109/TCOM.1976.1093424
http://hdl.handle.net/1721.1/13739
http://hdl.handle.net/1721.1/13739
http://hdl.handle.net/1721.1/13739
https://doi.org/10.4230/LIPIcs.CONCUR.2020.45
https://doi.org/10.1016/j.tcs.2019.12.026

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

715

716

717

718

719

720

721

722

E. André, S. Jacobs and E. Lefaucheux

A Proofs of Section 5

A.1 Proof of Proposition 14

» Proposition 14. Assume a gPTA A with a single clock and a single parameter, and £ one
of its locations. Deciding the emptiness of the set of timing parameter valuations v for which
(is reachable in the NTA v(A)* is undecidable, even without invariants, for all such A.

Proof. Let us show that the absence of invariants in the proof of Proposition 13 does not
harm the encoding of the 2CM. The overall idea is that, if a process “chooses” to not take some
outgoing transition in the absence of invariants, then we show that the whole computation is
stuck, and gua¢ is unreachable. Put it differently, while the absence of invariants may add
some runs, none of these runs can reach gpay, and the final correctness argument of the proof
of Proposition 14 still holds.

In the initial gadget in Figure 2e, if the process encoding x1 (resp. x2) fails in taking the
transition from £f to ¢ (resp. from £} to ¢7) after exactly p time units, then the first process
encoding t is stuck forever in étl, and gna1¢ is unreachable.

Now, consider the subpart encoding the clock ¢ (in all gadgets): in the absence of
invariants, no transition is forced to be taken. However, since all outgoing transitions from
the ¢! locations are guarded by ¢ = 0, staying more than 0 time unit blocks this process
forever, and gnar becomes unreachable. The same applies to intermediate locations, which
all have tight guards (e.g., t = p). Therefore, to reach gpa, then the process encoding clock ¢
must take all its guards at the appropriate time—which we assume from now on.

Then, consider the two subparts encoding clocks x; and x5. For the same reason, failing
in taking a transition will block the process forever and, due to the final gadget in Figure 2f
ensuring transitions are guarded by x = 0, will block the first process, and therefore gyt
will be unreachable.

This concludes the proof. <

A.2 Proof of Proposition 15

» Proposition 15. Let A be a gPTA, and ¢ one of its locations. For any n > 3, deciding
the emptiness of the set of timing parameter valuations v for which £ is reachable in the
NTA v(A)" is undecidable, even when A contains a single clock and a single parameter
without invariants.

Proof. The idea is to reuse the construction of the proof of Proposition 14, by “killing” any
process except 3 by sending them to “sink” locations, from which they cannot interfere with
the encoding of the 2-counter machine. Fix n > 3. The modified initial gadget is given in
Figure 5. The first three processes behave as in Figure 2e. Then, all remaining processes
are sent to “sink” locations (¢2 to £7~1); for one process i to reach its sink location £%, its
predecessor i — 1 must have reached its own sink location £271, due to the location guard
“[¢i=1]". Finally note that the first process (simulating t) must make sure that the last process

has reached its sink location (location guard “[¢7~1]”) before reaching the starting location gf.

This ensures that all processes ¢ > 3 are in sink locations, where they cannot interfere with
the encoding.
The rest of the proof then follows the reasoning of the proof of Proposition 14. <

23:19

CVIT 2016

23:20

723

724

725

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

753

Parametric disjunctive timed networks

(21 7
x=0 @
[Qf)] 1
T = %
[%] 2
r=20 {

Figure 5 Modified initial gadget for exactly n processes

A.3 Proof of Theorem 16

» Theorem 16. PR-emptiness is undecidable for general PDTNs, even with a single clock
and a single parameter (with invariants).

Proof. First note that, in order to traverse the gadgets from the proof of Proposition 13, one
needs (at least) 3 processes, due to the interdependency between the location guards. We
will show that any process beyond the 3 required processes can only “mimic” the behaviour
of one of the 3 required processes.

Consider a process beyond the first three processes. In the initial gadget (Figure 2e),
it can “choose” any of the three branches leading to the three subparts, as the first three
processes make them all available.

First assume this extra process follows the first subpart, simulating clock ¢: observe that,
in all the gadgets of the first subpart (Figures 2b, 3b, and 4b), the behaviour is almost
completely deterministic (e.g., all locations with invariant “t < p” are followed by a transition
guarded by “t = p”). The only exception is in the branching to either ¢! or ¢ in Figure 4b;
assuming exactly one of the location guards [¢};] or [¢i] holds (which we discuss below), then
this aforementioned extra process will follow exactly the behaviour of the first process.

Alternatively, assume that this extra process follows the second subpart (simulating 1)
and let us show that it will follow the second process (the third subpart is similar). In most
locations of our gadgets (Figures 2¢, 3¢, and 4c), the outgoing guards are tight w.r.t. the
invariant (e.g., invariant “x; < p+ 1” followed by a transition guarded by “x; = p+1”), and
this extra process is forced to follow the second process. In the remaining locations followed
by non-tight guards (e.g., “x; < p” in the increment gadget in Figure 3c), the guard is always
additionally guarded by the location guard [¢}], which makes its behaviour deterministic
since the processes simulating clock ¢ are deterministic. Therefore, this extra process is again
forced to follow the second process. The O-test and decrement gadget is similar, with one
additional crucial observation: since the aforementioned extra process mimicked the second
process so far, then in ¢}, due to the location guard [¢] ensuring a transition in O-time, then
either 21 = 0 or z1 > 0 holds, and therefore either both processes simulating z; reach £},
or both of them reach é,lc—which justifies the assumption made earlier.

For these reasons, gpa1¢ is reachable only if the first three processes correctly simulate the
2CM; since any additional processes will just simulate one of the first three processes, we

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

E. André, S. Jacobs and E. Lefaucheux

can just apply the correctness argument from the proof of Proposition 13. |

A.4 Proof of Theorem 17

» Theorem 17. PGR-emptiness is undecidable for general PDTNs, even with a single clock
and a single parameter, with or without invariants.

Proof. We prove the result without invariants. (The case with invariants is simpler and
follows immediately.)

The idea is that we ask whether all processes can reach the target location gnalt, which can
only be done if the 2CM was properly simulated. First note that asking whether all processes
can reach the target location gnays is a property satisfying the definition of global property in
Section 4, by simply checking that the number of all locations but gpa; is exactly 0 (called
“target problem”).

As in the proof of Theorem 16, in order to traverse the gadgets from the proof of
Proposition 13, one needs (at least) 3 processes, due to the interdependency between the
location guards. We show here that any process beyond the 3 required processes can only
“mimic” the behaviour of one of the 3 required processes, or block the system due to a
timelock if it fails to correctly mimic it.

First note that if any of the first three processes does not correctly encode the 2CM
(which is a possibility due to the absence of invariants), then an outgoing guard will not
be firable, and therefore this process will be blocked forever in its current location, and the
global property that all processes must reach gna;; cannot hold. So we assume that the first
three processes correctly encode the 2CM (w.l.o.g. we assume that process i encodes the i-th
subpart).

Now consider a process beyond the first three processes. In the initial gadget (Figure 2e),
it can “choose” any of the three branches leading to the three subparts, as the first three
processes make them all available. Due to the absence of invariants, the process can also
choose to not pass the initial gadget—but failing to take such a guard will block it forever in
a location due to the guards z = 0, and the global property that all processes must reach gnait
will never hold.

First assume this extra process follows the first subpart, simulating clock ¢: just as in the
proof of Theorem 16, because in all the gadgets of the first subpart (Figures 2b, 3b, and 4b),
the guards are always punctual (i.e., involve equalities), then this extra process will either
follow exactly the behaviour of the first process, or fail in taking some guard—therefore
remaining forever in its location and violating the global reachability property.

Alternatively, assume that this extra process follows the second subpart (simulating x1).

As in the former reasoning, either that extra process will exactly mimic the behaviour of the
second process, or will fail in taking some guard, and therefore being blocked in its location,
thus violating again the global reachability property.

The case of the final gadget is similar: if any of the processes arrive too early or too late,
they will be blocked due to the urgent guards (of the form = = 0 together with the location
guards), and the global reachability will be violated.

For these reasons, gpa1; is reachable only if the first three processes correctly simulate the
2CM and if all additional processes simulate exactly one of the first three processes. Finally,
we can again apply the correctness argument from the proof of Proposition 14. <

23:21

CVIT 2016

23:22

797

798

799

800

801
802
803
804
805
806
807
808

809

810
811
812
813

814

815

816
817
818
819
820
821
822
823
824
825

826

827

828

829

830
831

832

833

834

835

836

Parametric disjunctive timed networks

B Proofs of Section 6

B.1 Proof of Theorem 18

» Theorem 18. PR-emptiness (resp. PGR-emptiness) for fully parametric PDTNs with
1 parameter and arbitrarily many clocks is equivalent to PR (resp. PGR) for DTNs.

Proof. Let A be a fully parametric gPTA with 1 parameter p. A is therefore a fully
parametric PDTN. Let vy and v, denote the valuations such that vg(p) = 0 and vy (p) = 1.

We prove the result for global reachability properties (PGR-emptiness), as local properties
are a subcase. Fix a global property ¢. Let us show that PGR-emptiness does not hold iff ¢
is satisfied in a configuration reachable in (vo(A))™ or in (v1(A))™

The following lemma derives easily from [24, Proposition 4.7], adapted to the semantics
of NTAs (Section 3), and comes from the fact that, whenever no constant terms are used in a
gPTA, then rescaling the parameter valuation does not impact the satisfaction of reachability
properties.

» Lemma 21 (Multiplication of constants). Let A be a fully parametric gPTA with a single
parameter p. Fiz n € N. Let ¢ be a global property. Then for all parameter valuations v,
a configuration ¢ with ¢ |= ¢ is reachable in (v(A))" iff Vt € Qs such that t x v(p) €N, a
configuration ¢ with ¢’ = ¢ is reachable in ((t x v)(A))", where t x v denotes the valuation
such that (t x v)(p) =t x (v(p)).

We can now proceed to the proof of Theorem 18.

= Assume PGR-emptiness does not hold for A, i.e., there exists v such that there exists
n € Ny such that ¢ is satisfied in a reachable configuration in (v(A))". Let us show
that ¢ is satisfiable in a configuration reachable in (vo(A))" or in (v1(A))".
If v(p) = 0, then the result is immediate. If v(p) # 0, then from Lemma 21, ¢ is satisfied
in a configuration reachable in (v1(A))" (by choosing some appropriate ¢, i.e., ﬁ)
< Assume ¢ is satisfied in a reachable configuration in (vo(A))> or in (vi(A))*. That
is, there exists n € Ny such that there is a computation 7 of (vy(A))" or of (vi(A))"
reaching a configuration ¢ s.t. ¢ = ¢. Therefore PGR-emptiness does not hold.
Therefore, it suffices to test the satisfaction of ¢ in (vo(A))° and (v1(A))™.
Finally, the hardness argument is immediate, considering a PDTN without parameter,
and replacing constants different from 1 with additional clocks and locations. |

B.2 Proof of Theorem 19

Recall that P = Py, W Py. Given v,v’, we write v’ < v whenever Vp € Pr,v'(p) < v(p) and
Vp € Pu,v'(p) = v(p).

» Lemma 22 (Monotonicity). Let A be an L/U-gPTA. Let v be a parameter valuation. For
any v’ such that v' < v, for any n € Nsq, any computation of (v(A))" is a computation of

(v (A))"

Proof. From the fact that any valuation v’ < v will only add behaviours due to the enlarged
guards. <

» Theorem 19. PR-emptiness (resp. PGR-emptiness) for L/U-PDTNs is equivalent to PR
(resp. PGR) for DTNs.

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

E. André, S. Jacobs and E. Lefaucheux

Proof. We prove the result for global reachability properties (PGR-emptiness), as local
properties are a subcase. Let A be an L/U-gPTA and ¢ a global reachability property
over A. A is therefore an L/U-PDTN. Consider the DTN (vg/o0(A))™. Let us show that
PGR-emptiness does not hold iff ¢ is satisfied in a configuration reachable in (v o (A))™.

= Assume PR-emptiness does not hold for A, i.e., there exists v such that there exists
n € N5 such that ¢ is satisfied in (v(A))". That is, there exists a computation m
of (v(A))" reaching a configuration ¢ such that ¢ |= . From Lemma 22, 7 is a computation
of (v/(A))", for any v < v. And by extension, completely removing the upper-bound
guards (i.e., valuating upper-bound parameters with oco) only adds behaviour, and
therefore 7 is a computation of (vy/(A))". Hence ¢ is reachable in (vg/o(A))", and
hence ¢ is satisfied.

< Assume there exists a configuration ¢ reachable in (vg o (A))™ such that ¢ = . That
is, there exists n € Ny such that there is a computation 7 of (vg/o0(A))" reaching
a configuration ¢ s.t. ¢ = ¢. Now, Ug/so 18 MOt & proper parameter valuation, so we
need to exhibit a parameter valuation assigning to each parameter an integer value. We
reuse the same concrete parameter valuation for upper-bound parameters as exhibited
in [24, Proposition 4.4]: let T' be the smallest constant occurring in the L/U-gPTA A,
and let T' be the maximum clock valuation along 7. Fix D =T + |T'| + 1. (We add
T’ to compensate for potentially negative constant terms “d” in guards and invariants
of A.) Since the maximum clock valuation along 7 is T, any guard of the form z <
> 1<i<nm @ X pi + d, that was replaced with < oo in (vg a0 (A))", can be equivalently

replaced with < Y7, .., & X D + d without harming the satisfaction of the guard.

Therefore, ¢ is reachable in (vy,p(A))", and hence in (vy,p(A)). Therefore, since ¢ |= ¢,
PGR-emptiness does not hold.
Therefore, deciding PGR-emptiness for L/U-PDTNs amounts to deciding satisfaction of ¢ in
the DTN (vg,p(A))™
The case of local properties follows a similar reasoning. <

B.3 Proof of Theorem 20

» Theorem 20. PR-emptiness is decidable for PDTNs with a single clock, arbitrarily many
parameters, and no invariants.

In [12], the shortest time to reach a location could be computed, allowing to replace the
location guards one by one. That is, for each location appearing in a location guard, we send
one process to this location as quickly as possible, and which then remains in this location
forever. Hence, from the time this location can be reached, the location guard remains
satisfied forever. Note that this method only works thanks to the absence of invariants—which
allows processes to “die” in every location.

However, this method cannot be reused here in the presence of parameters, as the notion
of a “shortest time” is not entirely well-defined in this setting. As such, we do not want
to remove the location guards once at a time. Instead, we will write a formula of the first
order theory of the integers with addition (a.k.a. Presburger arithmetic) enhanced with the
divisibility operand, which will include the computation of the reachable durations of the
locations used in guards in parallel to the reachability of the final location. Hence, solving
PR-emptiness will boil down to deciding the truth of the formula.

In order to write this formula, we rely on results relating affine parametric semi-linear
sets (apSl sets), a parametric extension of semi-linear sets, to durations in a PTA. An apSl
sets is a function associating to a vector of parameter values p a semi-linear set of vectors of

23:23

CVIT 2016

23:24

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

900

901
902
903
904
905
906
907
908
909
910

911

912
913

914

915

916

917

918
919
920
921
922
923
924
925
926

927

Parametric disjunctive timed networks

integers. We will not need the specific shape of apSl sets here, but instead two important
properties they have.

First, given a PTA A with one clock and arbitrarily many parameters and given two
locations ¢, ¢ of A, one can compute [10] the set of parametric durations of runs reaching
¢ from /¢, and represent it using a one-dimensional apSl set. It is interesting to note that
the apSl set representation only contain integers, while the actual durations are a set of real
values. The idea of the apSl representation is that the value 2i is in S(p) iff the integer ¢
is a reachable duration, and 2¢ 4+ 1 is in S(p) iff all the values of the interval (i,i + 1) are
reachable durations. This representation hence strongly requires that the parameters range
over integers. We also note that the construction of this apSl set can easily be modified so
that given two locations £, ¢’ and n edges t1,...,t, of A, one could include the information
of when the edge t; was crossed on the way to ¢ for the first time. For instance, if n = 1,
(2i + 1,25) belongs to the corresponding apSl set iff ¢’ can be reached from £ in j time units,
and a path achieving this takes ¢; for the first time during the interval (i,i + 1).

Second, it was also shown in [10] that given an apSl set S, one can build a formula in
the existential fragment of Presburger arithmetic with divisibility (a decidable logic [25]) ¢s
such that given parameter values p, S(p) is not empty iff 3z € ¢g(x, p) is true.

We can now move to the proof.

Proof. Let A= (X, L, ¢y, {z},P,I,E) be a gPTA and ¢ be a target location.

We first guess a sequence e, ..., e, of different edges of F which contains a location
guard (we trivially have that m < |E|). These are intuitively the edges with location guards
which will be needed, either by the process reaching ¢¢, or by the processes which will reach
the locations used in location guards. We assume these edges are ordered by the date at
which they will be taken for the first time. In practice, this guess can be achieved by complete
enumeration.

For all i < m, we set ¢; to be the location appearing in the guard of edge e; and
set 1 = ;. In order to reach ¢;, some edges from ej,...e;—1 may be needed. Let
SRR be those edges, in the order they first appear in the run. We build the PTA
./41' = (E, Ll', (EO7 O), (5“ mi), {:Z?},]P, Ii, Ez) where

Li={(tk) | teLAke{0,. .. m}},

for any (¢,k) € L', I;(¢, k) = I(¢),

((¢,k),g,a,R,(¢',k)) € E'iff there exists e = (£,g,7,a, R,¢') € E such that one of the
following holds

k =k and v =T or there exists r < k such that e = €ji,
! j— .
k —k—i—lande—ejzﬂ.

In other words, A; consists in m; + 1 successive copies of A where the k’th copy blocks every
edge with location guard except el. with r < k + 1, and in particular taking e ; leads to
the next copy. This way, a run of A4; ending in the final location is forced to follow the
guessed structure with respect to the usage of edges with location guards. It however loses
information about when those edges are available.

By applying the previously mentioned result from [10, 26], we can build a semilinear
set T; of m; + 1-tuples parametric values representing the durations of runs going from (¢, 0)
to (¢;, m;), storing the intervals of the first firing of the edges e;r..

As previously mentioned, the construction of T; does not take into account the constraints
brought by the location guards. Assuming that for k < i location £y, is reached at time h;(p),

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

E. André, S. Jacobs and E. Lefaucheux

we can see that deciding the existence of parameter values p such that ¢; is reached in A is
equivalent to solving the formula?

E'p, E'dl, dll? - dmi+17d{m,3+17(d1p —+ dll, ey dmﬁ-lp —+ d;ni-‘rl) c 711',

!
\ dip+dj; > by (p)
k=1

Moreover, note that the value dm,+1p + d;,, | built here is a possible value for h;y1(p).

Hence by combining the formulas obtained for each i, removing the comparison to h;
(which becomes redundant once the variables are shared by every formula), and verifying
that the orders of each formula is compatible? we have that PR-emptiness is equivalent to
the falsity of

m—+1
Ip, 3y, di, . dmi1, dhyys /\ (dppp+djy,... dy, p+dj, dip+d;) €T

i=1

From [25], as this formula is expressed in the existential fragment of Presburger arithmetic
with divisibility, it is decidable. <

» Remark 23. Let us quickly discuss the complexity of this algorithm. The formulas produced
by [10] are at worst doubly exponential. The modifications we apply to them, combining
a polynomial number of those formulas, remains doubly exponential. We then rely on the
decidability of the existential fragment of Presburger arithmetic with divisibility which can
be solved in NEXPTIME [25]. The nondeterminism allowed through this last step combines
with the nondeterministic guesses of transition sequences without additional cost. As a
consequence, our algorithm lies in 3-NEXPTIME.

2 The characters in bold are vectors of variables. In order to avoid complexifying the formula, we did not
indicate the transformation from row to column vector which is necessary to multiply the two vectors
and produce a single term.

For example, if the path to location £ goes through a location guard on #', then £ cannot reciprocally be
on a location guard encountered on the way to £. This condition on order is not directly handled in

the formula in the case where both location guards can be reached within the same interval of time.

A more precise decomposition of time units, would allow including this condition into the formula.

23:25

CVIT 2016

	1 Introduction
	2 Parametric timed automata
	3 Parametric disjunctive timed networks
	4 Problems for parametric disjunctive timed networks
	5 Undecidability results
	5.1 Fixed number of processes
	5.1.1 Undecidability for 3 processes
	5.1.2 Undecidability for any fixed number of processes (with or without invariants)

	5.2 Parameterized reachability-emptiness with invariants
	5.3 Parameterized global reachability-emptiness

	6 Decidability results
	6.1 Fully parametric PDTNs with a single parameter
	6.2 L/U-PDTNs with arbitrarily many clocks and parameters
	6.3 PDTNs with one clock, arbitrarily many parameters and no invariants

	7 Conclusion
	A Proofs of section:undecidability
	A.1 Proof of proposition:undecidability:3-processes-noinvariants
	A.2 Proof of proposition:2CM:fixedn
	A.3 Proof of theorem:undecidability-local-invariants
	A.4 Proof of theorem:undecidability-global-noinvariants

	B Proofs of section:decidability
	B.1 Proof of theorem:decidability:fpPTA
	B.2 Proof of theorem:L/U
	B.3 Proof of theorem:decidability:no-invariant

