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Abstract9

We consider distributed systems with an arbitrary number of processes, modelled by timed automata10

that communicate through location guards: a process can take a guarded transition if at least11

one other process is in a given location. In this work, we introduce parametric disjunctive timed12

networks, where each timed automaton may contain timing parameters, i.e., unknown constants. We13

investigate two problems: deciding the emptiness of the set of parameter valuations for which 1) a14

given location is reachable for at least one process (local property), and 2) a global state is reachable15

where all processes are in a given location (global property). Our main positive result is that the16

first problem is decidable for networks of processes with a single clock and without invariants;17

this result holds for arbitrarily many timing parameters—a setting with few known decidability18

results. However, it becomes undecidable when invariants are allowed, or when considering global19

properties, even for systems with a single parameter. This highlights the significant expressive power20

of invariants in these networks. Additionally, we exhibit further decidable subclasses by restraining21

the syntax of guards and invariants.22
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1 Introduction26

Parametrised verification [2, 6] consists in verifying a system’s behaviour across all possible27

configurations of a certain parameter, such as the number of processes. It is most commonly28

used in the context of networks of identical finite-state processes, and it involves proving29

that a property holds for any number of processes. This type of verification is crucial for30

distributed systems, where an arbitrary number of identical agents may be interacting, and31

ensures that system correctness is maintained no matter the scale of the system.32

When timing constraints are involved, more powerful formalisms are needed. Timed33

automata (TAs) [7] extend finite-state automata with clocks (measuring the time elapsing,34

and constraining the way to remain in locations or to take transitions), and offer a powerful35

framework for the verification of real-time systems. Clock constraints are used to constrain36

the time to remain in a location (“invariant”) or to take a transition (“guard”).37

Several works consider parametrised verification for networks of timed automata [5,38

4, 1, 3], showing that it quickly hits undecidability, notably when multiple clocks are39

involved. Decidability in the presence of multiple clocks can be preserved by restricting the40

communication between processes, e.g., to communication via location guards: a process can41

take a transition guarded by a location ` if at least one other process currently occupies `. In42

disjunctive timed networks, where identical processes communicate via such location guards,43

local reachability and safety properties can be decided for any number of clocks [32, 12], even44

in the presence of invariants [13].45
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23:2 Parametric disjunctive timed networks

When timing constants are not known with full precision (or completely unknown, e.g.,46

at the beginning of the design phase), timed automata may become impractical. Parametric47

timed automata (PTAs) [8] address this issue by allowing the modelling and verification of48

real-time systems with unknown or variable timing constraints modelled as timing parameters.49

This flexibility enables the analysis of system behaviour across a range of parameter valuations,50

ensuring correctness under diverse conditions and facilitating optimization of parameters.51

Common decision problems for parametric timed automata also quickly hit undecidability:52

emptiness of the parameter valuations set for which a given location is reachable (“reachability-53

emptiness”), for a single PTA, is undecidable with as few as 3 clocks and a single timing54

parameter (see [9] for a survey).55

Contributions56

In this paper, we address the verification of systems with unknown timing constants over an57

arbitrary number of processes. In that sense, this parametrised parametric timed setting58

can be seen as having parameters in two dimensions: timing parameters, and number of59

processes. We introduce parametric disjunctive timed networks (PDTNs) as networks of60

identical parametric timed processes resembling PTAs, and communicating via location61

guards. A combination of two types of parameters appears natural, especially when designing62

and verifying communication protocols. These protocols must function regardless of the63

number of participants (hence the parametric size of networks), while timing parameters64

allow designers to adjust critical time constraints in each process during early stages of65

development, where timing is of paramount importance.66

Motivating example. We consider an example inspired by applications in the verification67

of asynchronous programs [21, 13]. In this setting, processes (or threads) can be “posted”68

at runtime to solve a task, and will terminate upon completing the task. Our example,69

depicted in Figure 1, features one clock x per process; symbols σi are transition labels of70

the automaton. An unbounded number of processes start in the initial location init. In the71

inner loop, a process can move to location listen in order to see whether an input channel72

carries data. Once it determines that this is the case (in our example this always happens73

after some time), it moves to location post, which gives the command to post a process that74

actually reads the data, and then can return to init. In the outer loop, if there is a process75

that gives the command to read data, i.e., a process that is in post, then another process can76

accept that command and move to reading. After reading for some time, the process will77

either determine that all the data has been read and move to done, or it will timeout and78

move to post to ask another process to carry on reading. However, this scheme may run into79

an error if there are processes in done and reading at the same time, modelled by a transition80

from reading to error that can only be taken if done is occupied. The time to move to error is81

parametric, and should be greater than the (unknown) duration p. A natural problem is to82

identify valuations of p for which error is unreachable regardless of the number of processes.83

Problems. We focus here on the parametrised reachability-emptiness problem: decide the84

emptiness of the set of timing parameter valuations for which there exists a number of85

processes such that a given configuration is reachable.86

We consider both local properties (reachability condition involving one process), and87

global properties (which can typically express the absence of deadlocks, or the fact that all88

processes must reach a given location).89

We also distinguish the presence or the absence of invariants—and we will see that this90

makes a critical difference in decidability.91
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Figure 1 Asynchronous data read example (variation from [13])

In this paper, we prove several results regarding parametrised reachability-emptiness:92

undecidability of local properties for PDTNs with 1 clock, 1 parameter, with invariants93

(Section 5.2).94

undecidability of global properties for PDTNs with 1 clock, 1 parameter, with or without95

invariants (Section 5.3).96

decidability for fully parametric PDTNs with 1 parameter (Section 6.1);97

decidability for PDTNs when parameters are partitioned into lower-bound and upper-98

bound parameters (Section 6.2);99

decidability of local properties for PDTNs with 1 clock, arbitrarily many parameters,100

without invariants (Section 6.3).101

The most surprising result emphasizes the high expressive power of invariants (something102

which has no impact in single PTAs): local properties in PDTNs are decidable without but103

become undecidable in their presence, for only 1 clock. In addition, both local and global104

properties are undecidable with invariants for a single clock and a single parameter—a setting105

decidable in the context of PTAs taken in isolation: that is to say, while the communication106

primitive is weak, it is sufficiently expressive to encode models such a 2-counter machines.107

We also note that local properties in 1-clock PDTNs are decidable for an unbounded number108

of timing parameters.109

Additionally, both as a proof ingredient and as an interesting result per se, we show in110

Section 5.1 that the reachability-emptiness problem is undecidable for 1 clock, 1 parameter,111

with and without invariants and any a priori fixed number (≥ 3) of processes—even though112

the parametrised version of this problem, i.e., for any (non a priori fixed) number of processes,113

is decidable.114

Related work. The concept of identical processes in a timed setting was mainly addressed115

in networks of processes that either communicate via k-wise synchronization [5, 4, 3] or via116

location guards [32, 12, 13]. The former model is equivalent to a variant of timed Petri117

nets [30, 28, 22, 17], whereas the latter would be equivalent to a form of timed Petri nets118

restricted to immediate observation steps (as in [20, 31]), which however have not been119

studied separately to the best of our knowledge.120

Very few works study decidability results when combining two types of parameters, i.e.,121

discrete (number of processes) and continuous (timing parameters). In [18, 27], security pro-122

tocols are studied with unknown timing constants, and an unbounded number of participants.123

However, the focus is not on decidability, and the general setting is undecidable. In [14],124

action parameters (that can be seen as Boolean variables) and continuous timing parameters125

are combined (only linearly though) in an extension of PTAs; the mere emptiness of the sets126

CVIT 2016



23:4 Parametric disjunctive timed networks

of action and timing parameters for which a location is reachable is undecidable. In contrast,127

we exhibit in this work some decidable cases.128

The closest work to ours, and presumably the only one to consider timing parameters in129

the setting of parametrised verification, is in [11] where parametric timed broadcast protocols130

(PTBPs) are introduced. Our contributions differ in the communication setting: while131

we consider location guards, [11] considers broadcast in cliques (in which every message132

reaches every process) and in reconfigurable topologies (in which the set of receivers is133

chosen non-deterministically). Moreover, in this work we study the power of invariants,134

which are absent from [11]. Our decidability results are also significantly better than in [11]:135

In [11], parametrised reachability-emptiness (for local properties) is undecidable for PTBPs136

composed of general PTAs, even with a single clock and without invariants, both in the137

reconfigurable semantics and in the clique semantics. The only decidable subcase (for both138

semantics) for reachability-emptiness in [11] is severely restricted with 3 conditions that must139

hold simultaneously: a single clock per process, parameters partitioned into lower-bound and140

upper-bound parameters, and bounded (possibly rational-valued) parameters—relaxing any141

of these conditions leads to undecidability. In contrast, we prove here decidability for general142

PDTNs with 1 clock and arbitrarily many parameters, or for parameters partitioned into143

lower-bound and upper-bound. Also note that our results do not reuse any proof ingredients144

from [11] due to the different communication.145

Outline. We recall the necessary material in Section 2. We formalize parametric disjunctive146

timed networks in Section 3, and our problem in Section 4. We prove undecidability results147

in Section 5 and decidability results in Section 6. We conclude in Section 7.148

2 Parametric timed automata149

We denote by N,N>0,Z,R≥0 the sets of non-negative integers, strictly positive integers,150

integers, and non-negative reals, respectively. Let ./ ∈ {<,≤,=,≥, >}.151

Clocks are real-valued variables that all evolve over time at the same rate. Throughout152

this paper, we assume a set X = {x1, . . . , xH} of clocks. A clock valuation is a function153

µ : X→ R≥0, assigning a non-negative value to each clock. We write ~0 for the clock valuation154

assigning 0 to all clocks. Given R ⊆ X, we define the reset of a valuation µ, denoted by [µ]R,155

as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise. Given a constant d ∈ R≥0,156

µ+ d denotes the valuation s.t. (µ+ d)(x) = µ(x) + d, for all x ∈ X.157

A (timing) parameter is an unknown integer-valued constant. Throughout this paper,158

we assume a set P = {p1, . . . , pM} of parameters. A parameter valuation v is a function159

v : P→ N.160

A constraint C is a conjunction of inequalities over X∪P of the form x ./
∑

1≤i≤M αi×pi+161

d, with x ∈ X, pi ∈ P, and αi, d ∈ Z. We call d a constant term. Given C, we write µ |= v(C)162

if the expression obtained by replacing each x with µ(x) and each p with v(p) in C evaluates163

to true. Let Φ(X∪P) denote the set of constraints over X∪P. Let True denote the constraint164

made of no inequality, i.e., representing the whole set of clock and parameter valuations.165

I Definition 1 (PTA [8]). A PTA A is a tuple A = (Σ, L, `0,X,P, I, E), where: 1) Σ is a166

finite set of actions; 2) L is a finite set of locations; 3) `0 ∈ L is the initial location; 4) X is167

a finite set of clocks; 5) P is a finite set of parameters; 6) I : L→ Φ(X ∪ P) is the invariant,168

assigning to every ` ∈ L a constraint I(`) over X ∪ P; 7) E ⊆ L× Φ(X ∪ P)× Σ× 2X × L is169

a finite set of edges τ = (`, g, a, R, `′) where `, `′ ∈ L are the source and target locations, g is170

a constraint (called guard), a ∈ Σ, and R ⊆ X is a set of clocks to be reset. We say that a171

location ` does not have an invariant if I(`) = True.172
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I Definition 2 (Valuation of a PTA). Given a PTA A and a parameter valuation v, we173

denote by v(A) the non-parametric structure where all occurrences of a parameter pi have174

been replaced by v(pi). v(A) is a timed automaton.175

We recall the concrete semantics of a TA using a timed transition system (TTS).176

I Definition 3 (Semantics of a TA). Given a PTA A = (Σ, L, `0,X,P, I, E) and a parameter177

valuation v, the semantics of v(A) is given by the TTS Tv(A) = (S, s0,Σ ∪ R≥0,→), with178

1. S =
{

(`, µ) ∈ L× RH≥0 | µ |= v(I(`))
}
, s0 = (`0,~0),179

2. → consists of the discrete and (continuous) delay transition relations:180

a. discrete transitions: (`, µ) τ7→ (`′, µ′), if (`, µ), (`′, µ′) ∈ S, and there exists τ =181

(`, g, a, R, `′) ∈ E, such that µ′ = [µ]R, and µ |= v(g).182

b. delay transitions: (`, µ) d7→ (`, µ+ d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.183

Moreover we write (`, µ) (d,τ)−→ (`′, µ′) for a combination of a delay and a discrete transition184

if ∃µ′′ : (`, µ) d7→ (`, µ′′) τ7→ (`′, µ′).185

Given a TA A with concrete semantics TA, we refer to the states of S as the concrete186

states of A. A run of A is an alternating sequence of concrete states of A and pairs of delays187

and edges starting from the initial state s0 of the form (`0, µ0), (d0, τ0), (`1, µ1), · · · with188

i = 0, 1, . . . , τi ∈ E, di ∈ R≥0 and (`i, µi)
(di,τi)−→ (`i+1, µi+1). Given a TA A, we say that a189

location ` is reachable if there exists a state (`, µ) that appears on a run of A.190

Reachability-emptiness. Given a PTA A and a location `, the reachability-emptiness problem191

asks whether the set of parameter valuations v such that ` is reachable in v(A) is empty.192

I Definition 4 (L/U-PTA [24]). An L/U-PTA (lower-bound/upper-bound PTA) is a PTA193

where P is partitioned into P = PL ] PU , where PL (resp. PU) denotes lower-bound (resp.194

upper-bound) parameters, so that each lower-bound (resp. upper-bound) parameter pi must be195

such that, for every constraint x ./
∑

1≤i≤M αi × pi + d, we have: 1) ./ ∈ {≤, <} implies196

αi ≤ 0 (resp. αi ≥ 0), and 2) ./ ∈ {≥, >} implies αi ≥ 0 (resp. αi ≤ 0).197

A PTA is fully parametric whenever it has no constant term (apart from 0):198

I Definition 5 (Fully parametric PTA [24, Definition 4.6]). A PTA A is fully parametric if199

every constraint in A is of the form x ./
∑

1≤i≤M αi × pi, with pi ∈ P and αi ∈ Z.200

Our subsequent undecidability proofs work by reduction from the halting problem for201

2-counter machines. A deterministic 2-counter machine (“2CM”) [29] has two non-negative202

counters C1 and C2, a finite number of states and a finite number of transitions, which can203

be of the form (for l ∈ {1, 2}): i) “when in state qi, increment Cl and go to qj”; or ii) “when204

in state qi, if Cl = 0 then go to qk, otherwise decrement Cl and go to qj”.205

The 2CM starts in state q0 with the counters set to 0. The machine follows a deterministic206

transition function, meaning for each combination of state and counter conditions, there is ex-207

actly one action to take. The halting problem consists in deciding whether some distinguished208

state called qhalt can be reached or not. This problem is known to be undecidable [29].209

3 Parametric disjunctive timed networks210

We extend guarded TAs defined in [12] with timing parameters as in PTAs. We follow the211

terminology and use abbreviations from [32, 12].212

CVIT 2016



23:6 Parametric disjunctive timed networks

I Definition 6 (Guarded Parametric Timed Automaton (gPTA)). A gPTA A is a tuple213

A = (Σ, L, `0,X,P, I, E), where: 1) Σ is a finite set of actions; 2) L is a finite set of214

locations; 3) `0 ∈ L is the initial location; 4) X is a finite set of clocks; 5) P is a finite set215

of parameters; 6) I : L→ Φ(X ∪ P) is the invariant, assigning to every ` ∈ L a constraint216

I(`) (called invariant); 7) E ⊆ L × Φ(X ∪ P) × (L ∪ {>}) × Σ × 2X × L is a finite set of217

edges τ = (`, g, γ, a, R, `′) where `, `′ ∈ L are the source and target locations, g is a constraint218

(called guard), γ is the location guard, a ∈ Σ, and R ⊆ X is a set of clocks to be reset.219

Intuitively, an edge τ = (`, g, γ, a, R, `′) ∈ E takes the automaton from location ` to `′;220

τ can only be taken if guard g and location guard γ are both satisfied, and it resets all clocks221

in R. Note that satisfaction of location guards is only meaningful in a network of gPTAs222

(defined below). Intuitively, a location guard γ is satisfied if it is > or if another automaton223

in the network currently occupies location γ.224

I Example 7. In Figure 1, the transition to error is guarded both by a guard x > p and by225

a location guard [done]. In contrast, the location guard to done is > (and omitted in the226

figure), i.e., it can be taken without assumption on the location of other processes.227

A gPTA is an L/U-gPTA if parameters are partitioned into lower-bound and upper-bound228

parameters (as in Definition 4). A gPTA is fully parametric whenever it has no constant229

term (apart from 0) (as in Definition 5).230

Recalling the semantics of NTAs. A gPTA with P = ∅ is called a guarded timed automaton231

(gTA) [12]. Given a gPTA A and a parameter valuation v, we denote by v(A) the non-232

parametric structure where all occurrences of a parameter pi have been replaced by v(pi);233

v(A) is a gTA.234

Let A be a gTA. We denote by An the parallel composition A ‖ · · · ‖ A of n copies of A,235

also called a network of timed automata (NTA) of size n. Each copy of A in the NTA An236

is called a process. A configuration c of an NTA An is a tuple c =
(
(`1, µ1), . . . , (`n, µn)

)
,237

where every (`i, µi) is a concrete state of A. The semantics of An can be defined as a238

TTS (C, ĉ, T ), where C denotes the set of all configurations of An, ĉ is the unique initial239

configuration (`0,0)n, and the transition relation T is the union of the following delay and240

discrete transitions:241

delay transition
(
(`1, µ1), . . . , (`n, µn)

) d−→
(
(`1, µ1 + d), . . . , (`n, µn + d)

)
, with d ∈ R≥0, if242

∀i ∈ {1, . . . , n},∀d′ ∈ [0, d] : µi + d′ |= I(`i), i.e., we can delay d ∈ R≥0 units of time if243

all clock invariants are satisfied until the end of the delay.244

discrete transition
(
(`1, µ1), . . . , (`n, µn)

) (i,a)−−−→
(
(`′1, µ′1), . . . , (`′n, µ′n)

)
for some i ∈245

{1, . . . , n} if 1) (`i, µi)
τ−→ (`′i, µ′i) is a discrete transition1 of A with τ = (`i, g, γ, a, R, `′i)246

for some g, γ and R, 2) γ = > or `j = γ for some j ∈ {1, . . . , n} \ {i}, and 3) `′j = `j and247

µ′j = µj for all j ∈ {1, . . . , n} \ {i}.248

That is, location guards γ are interpreted as disjunctive guards: unless γ = >, at least249

one of the other processes needs to occupy location γ in order for process i to pass this guard.250

We write c
d,(i,a)−−−−→ c′′ for a delay transition c

d−→ c′ followed by a discrete transition251

c′
(i,a)−−−→ c′′. Then, a timed path ofAn is a finite sequence π = c0

d0,(i0,a0)−−−−−−→ · · · dl−1,(il−1,al−1)−−−−−−−−−−→ cl.252

A timed path π of An is a computation if c0 = ĉ. We say that cl is reachable in An.253

1 Strictly speaking, (`i, µi)
τ−→ (`′

i, µ
′
i) is a transition of the TA obtained from A by replacing location

guards with >.
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We write ` ∈ c if c =
(
(`1, µ1), . . . , (`n, µn)

)
and ` = `i for some i ∈ {1, . . . , n}. We say254

that a location ` is reachable in An if there exists a reachable configuration c s.t. ` ∈ c.255

Given a gPTA A, we denote by An the parallel composition A ‖ · · · ‖ A of n copies256

of A, also called a network of parametric timed automata (NPTA). Given an NPTA An257

and a parameter valuation v, we denote by v(An) the non-parametric structure where all258

occurrences of a parameter pi have been replaced by v(pi); note that v(An) is an NTA.259

I Definition 8. A given gPTA A induces a parametric disjunctive timed network (PDTN)260

A∞, defined as the following family of NPTAs: A∞ = {An | n ∈ N>0}.261

Given a parametric disjunctive timed network A∞ and a parameter valuation v, (v(A))∞262

is a disjunctive timed network (DTN) [32].263

Given a location ` of a gPTA A, given a parameter valuation v, we say that ` is reachable264

in the DTN (v(A))∞ if there exists n ∈ N>0 such that ` is reachable in (v(A))n.265

Subclasses of PDTNs. A PDTN A∞ induced by a gPTA A is an L/U-PDTN if A is an266

L/U-gPTA. Similarly, A∞ is a fully parametric PDTN if A is a fully parametric gPTA.267

4 Problems for parametric disjunctive timed networks268

Reachability. In [12], the parametrised reachability problem (PR) consists in deciding269

whether, given a gTA A and a location `, there exists n ∈ N such that ` is reachable in An.270

Here, we consider a parametric version. The emptiness extension consists in asking whether271

the set of timing parameter valuations for which PR holds is empty.272

Parameterized reachability-emptiness problem (PR-e):
Input: a gPTA A and a location `
Problem: Decide the emptiness of the set of timing parameter valuations v for which `
is reachable in (v(A))∞.

273

I Example 9. In Figure 1, PR-e with error as target location does not hold: for v(p) = 1,274

location error can be reached for ≥ 3 processes.275

Without invariants, |L| is a cutoff (i.e., a number of processes above which the reachability276

is homogeneous—better cutoffs are known for local properties). Intuitively, this is because,277

without invariants, a single process that reaches such a location can stay there and enable278

the guard forever. However, with invariants, such a simple cutoff does not work (even in the279

absence of timing parameters), since invariants might force a process to leave a location and280

lots of different processes might be needed to occupy a location at different points in time.281

Global reachability. Global properties refer to the numbers of processes in given locations;282

we express these using constraints. Formally, a global reachability property is defined by a283

constraint ϕ in the following grammar: ϕ ::= #` ≥ 1 | #` = 0 | ϕ ∧ ϕ | ϕ ∨ ϕ, where ` ∈ L284

and #` refers to the number of processes in `. Note that the “#` = 0” term is responsible285

for the “global” nature of such properties, i.e., it must hold for all processes that they are286

not in `. The satisfaction of a constraint ϕ by c =
(
(`1, µ1), . . . , (`n, µn)

)
is defined naturally:287

c |= #` ≥ 1 if ` ∈ c; c |= #` = 0 if ` /∈ c; and as usual for Boolean combinations. The288

parametrised global reachability problem (PGR) consists in deciding whether, given a gTA A289

and a global reachability property ϕ, there exists n ∈ N such that a configuration c with290

c |= ϕ is reachable in An. Again, we extend this problem to the emptiness of the set of291

timing parameters:292

CVIT 2016



23:8 Parametric disjunctive timed networks

Parameterized global reachability-emptiness problem (PGR-e):
Input: a gPTA A and a global reachability property ϕ
Problem: Decide the emptiness of the set of timing parameter valuations v for which a
configuration c with c |= ϕ is reachable in (v(A))∞.

293

As special cases, the parametrised global reachability problem includes control-state294

reachability (where ϕ is #` ≥ 1 for a single location `; also expressible as a PR-e problem)295

and detection of timelocks that are due to location guards (where ϕ is a disjunction over296

conjunctions of the form #` ≥ 1∧#`1 = 0∧ · · · ∧#`m = 0, where ` can only be left through297

edges guarded by one of the `1, . . . , `m). We will be particularly interested in the global298

property asking whether all processes reach a given final configuration (where ϕ is of the299

form #`1 = 0 ∧ · · · ∧#`m = 0 with m = |L| − 1), sometimes called the target problem [19].300

I Example 10. In Figure 1, consider the global property ϕ stating that all processes must301

be in error. This property can be written as #init = 0∧#listen = 0∧#post = 0∧#reading =302

0 ∧#done = 0; then, PGR-e holds: no parameter valuation can allow all processes to be303

simultaneously in error, whatever the number of processes (this comes from the fact that the304

transition to error is guarded by done, so at least one process must be elsewhere).305

5 Undecidability results306

5.1 Fixed number of processes307

We first consider a fixed number of processes; the problem addressed here is therefore not308

(yet) parametrised reachability-emptiness, but only reachability-emptiness. These results will309

be used as important proof ingredients for the results in Sections 5.2 and 5.3. (Then, the310

three results in Section 6 use 3 different proof techniques, completely different from this one.)311

5.1.1 Undecidability for 3 processes312

In the following, we show that the emptiness of the parameter valuations set for which a313

location is reachable in an NPTA made of exactly 3 processes (“reachability-emptiness”) is314

undecidable. We first prove the result with invariants (Proposition 13), and then show it also315

holds without (Proposition 14). The idea is that invariants are not needed for 3 processes,316

but will be necessary when proving undecidability for an unbounded number of processes317

(Theorem 16).318

Before that, we first reprove a well-known result stating that reachability-emptiness is319

undecidable for PTAs with 3 clocks and a single parameter. This result was already proved320

(with 3 or more clocks) in, e.g., [8, 16, 15] with various proof flavors. The construction321

we introduce in the proof of Lemma 11 will be then reused and modified in the proof of322

Proposition 13, which is why we give it first with full details.323

I Lemma 11. Reachability-emptiness is undecidable for PTAs with 3 clocks and 1 parameter.324

Proof. We reduce from the halting problem of 2-counter machines, which is undecidable [29].325

Given a 2CMM, we encode it as a PTA A. Let us describe this encoding in detail, as we326

will modify it in the subsequent proofs.327

Each state qi of the machine is encoded as a location of the PTA, which we call qi. The328

counters are encoded using clocks t, x1 and x2 and one integer-valued parameter p, with the329

following relations with the values c1 and c2 of counters C1 and C2: when t = 0, we have330

x1 = c1 and x2 = c2. This clock encoding is classical for integer-valued parameters, e.g.,331

[16, 15]. The parameter typically encodes the maximal value of the counters along a run.332
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`0 q0

t = p ∧ t > 1

t, x1, x2 ← 0

(a) Initial gadget: single PTA version

`t0 `t1 qt0

t ≤ p t = 0 t = 0
t = p ∧ t > 1

t← 0
[`2

1]
t = 0

(b) Initial gadget: gadget simulating t

`1
0 `1

1 q1
0

x1 ≤ p x1 = 0 · · ·
[`t1]

x1 ← 0
[qt0]

x1 = 0

(c) Initial gadget: gadget simulating x1

`2
0 `2

1 q2
0

x2 ≤ p x2 = 0 · · ·
[`1

1]
x2 ← 0

[qt0]
x2 = 0

(d) Initial gadget: gadget simulating x2

`t0 `t1 qt0

x ≤ p x = 0 x = 0

`1
1 q1

0

x = 0 · · ·

`2
1 q2

0

x = 0 · · ·

x = p ∧ x > 1
x← 0

[`2
1]

x = 0
[`t1]

x← 0
[qt0]
x = 0[`1

1]
x← 0 [qt0]

x = 0
(e) Initial gadget: global gadget as a single gPTA

qthalt `thalt qhalt

x = 0 x = 0 x = 0

q1
halt `1

halt

x = 0 x = 0

q2
halt `2

halt

x = 0 x = 0

x = 0
[`2
halt]

x = 0

[`thalt]
x = 0

[qhalt]
x = 0

[`1
halt]

x = 0

[qhalt]
x = 0

(f) Final gadget as a single gPTA

Figure 2 Initial and final gadgets

We initialize the clocks with the gadget in Figure 2a (that also blocks the case where333

p ≤ 1). Note that, throughout the paper, we highlight in thick green style the locations of334

the PTA corresponding to a state of the 2CM (in contrast with other locations added in the335

encoding to maintain the matching between the clock values and the counter values). Since336

all clocks are initially 0, in Figure 2a clearly, when in q0 with t = 0, we have x1 = x2 = 0,337

which indeed corresponds to counter values 0.338

We now present the gadget encoding the increment instruction of C1 in Figure 3a. The339

edge from qi to `i1 only serves to clearly indicate the entry in the increment gadget and340

is done in 0 time unit. Since every edge is guarded by one equality, there are really only341

two timed paths that go through the gadget: one going through `i2 and one through `′i2,342

depending on the respective order between c1 and c2. Observe that on both timed paths the343

gadget lasts exactly p time units (due to the guards and resets of t). In addition, x2 is reset344

exactly when it equals p, hence its value when entering the gadget is identical to its value345

when reaching qj . Therefore c2 is unchanged. Now, x1 is reset when it equals p− 1, hence its346

value after the gadget of duration p is incremented by 1 compared to its value when entering347

the gadget. Therefore c1 is incremented by 1 when reaching qj , as expected.348

Let us now consider the 0-test and decrement gadget. Decrement is done similarly to349

increment, by replacing guards x1 = p − 1 with x1 = p + 1, as shown in Figure 4a. In350

addition, the 0-test is obtained by simply testing that x1 = 0 whenever t = 0 (which ensures351

that c1 = 0), which is done on the guard from qj to `k1; we then force exactly p time units352

to elapse (and reset each clock when it reaches p), which means that the values of the clocks353

when leaving the gadget are identical to their value when entering. This is not strictly354

speaking needed here, but this time elapsing will simplify the proof of Proposition 13. Dually,355

the guard from qi to `i1 ensures that decrement is done only when the counter is not null.356

All those gadgets also work for counter C2 by swapping x1 and x2.357

The actions associated with the edges do not matter; we can assume a single action a on358

all edges (omitted in all figures).359
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qi `i1

`i2

`′i2

`i3 qj
t = 0

x2 = p

x2 ← 0

x1 = p− 1
x1 ← 0

x1 = p− 1
x1 ← 0

x2 = p

x2 ← 0

t = p

t← 0

(a) Increment C1: single PTA version

qti `ti qtj

t = 0 t ≤ p t = 0
t = 0 t = p

t← 0
(b) Increment C1: gadget simulating t

q1
i `1

i q1
j

x1 ≤ p− 1 x1 ≤ p · · ·
x1 = p− 1
x1 ← 0

[qtj ]
x1 ≤ p

(c) Increment C1: gadget simulating x1

q2
i `2

i q2
j

x2 ≤ p x2 ≤ p · · ·
x2 = p

x2 ← 0
[qtj ]

x2 ≤ p

(d) Increment C1: gadget simulating x2

Figure 3 Increment gadget

We now prove that the machine halts iff there exists a parameter valuation v such that360

v(A) reaches location qhalt. First note that if p ≤ 1 the initial gadget cannot be passed, and361

so the machine does not halt. Assume p > 1. Consider two cases:362

1. either the value of the counters is not bounded (and the 2CM does not halt). Then, for363

any parameter valuation, at some point during an increment of, say, C1 we will have c1 > p364

and hence x1 > p− 1 when taking the edge from `i2 to `i3 and the PTA will be blocked.365

Therefore, there exists no parameter valuation for which the PTA can reach qhalt.366

2. or the value of the counters remains bounded. Let cmax be their maximal value. Let us367

consider two subcases:368

a. either the machine reaches qhalt: in that case, if cmax ≤ p, then the PTA valuated369

with such parameter valuations correctly simulates the machine, yielding a (unique)370

run reaching location qhalt.371

b. or the machine does not halt. Then again, for a sufficiently large parameter valuation372

(i.e., p > cmax), the machine is properly simulated, and since the machine does not373

halt, then the PTA never reaches qhalt. For other values of p, the machine will block374

at some point in an increment gadget, because p is not large enough and the guard in375

the increment gadget cannot be satisfied.376

Hence the machine halts iff there exists a parameter valuation v such that v(A) reaches qhalt.377

J378

I Remark 12. Observe that the proof of Lemma 11 does not require invariants, so undecid-379

ability holds without invariants as well—a result known since [8].380

We now prove undecidability of the reachability-emptiness in NTA with exactly 3 processes,381

by rewriting the 2CM encoding from the former proof.382

I Proposition 13. Assume a gPTA A with invariants, with a single clock and a single383

parameter, and ` one of its locations. Deciding the emptiness of the set of timing parameter384

valuations v for which ` is reachable in the NTA v(A)3 is undecidable, for all such A.385

Proof. The proof main technicality is to rewrite the 2CM encoding of Lemma 11 (made386

of a PTA with 3 clocks) using 3 processes with 1 clock each. This is not trivial as the387

communication model between our gPTAs is rather weak. Recall that the parameter encodes388
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qi `i1

`i2

`′i2

`i3 qj

`k1

`k2 qk

t = 0
∧x1 > 0

x2 = p

x2 ← 0

x1 = p+ 1
x1 ← 0

x1 = p+ 1
x1 ← 0

x2 = p

x2 ← 0

t = p

t← 0

t = 0
∧x1 = 0

x2 = p

x2 ← 0

t = p

t, x1 ← 0

(a) 0-test and decrement (C1): single PTA version

qti `ti qtj

`tk

qtk

t = 0

t ≤ p t = 0
t ≤ p

t = 0

[`1
i1]

t = 0
t = p

t← 0

t = 0 [`1
k]

t = p

t← 0

(b) 0-test and decrement (C1): gadget simulating t

q1
i `1

i1 `1
i2 q1

j

`1
k

q1
k

x1 ≤ p+ 1

x1 ≤ p+ 1 x1 ≤ p · · ·
x1 ≤ p

· · ·

[qti ]
x1 > 0

x1 = p+ 1
x1 ← 0

[qtj ]
x1 ≤ p

x1 = 0 [qti ]

x1 = p

x1 ← 0 [qtk]

(c) 0-test and decrement (C1): gadget simulating x1

q2
i `2

i q2
j

`2
k

q2
k

x2 ≤ p

x2 ≤ p · · ·
x2 ≤ p

· · ·

[`ti]
x2 = p

x2 ← 0
[qtj ]

x2 ≤ p

x2 = p

x2 ← 0 [`tk]

x2 ≤ p [qtk]

(d) 0-test and decrement (C1): gadget simulating x2

Figure 4 0-test and decrement gadget

typically the maximal valuation of the counters, and can therefore be arbitrarily large; we389

can assume without loss of generality that p > 1. Here, we use three different gPTAs (each390

featuring a single clock) synchronizing together; of course, strictly speaking, we can use only391

a single structure, but with three “subparts”, and we ensure that each of the 3 processes will392

go into a different subpart of the gPTA. This is ensured by the initial gadget in Figure 2e: in393

order for process 1 to reach location qt0, then, due to the location guards, exactly one other394

process must have selected the second subpart (location `1
1) while the third process must395

have selected the third subpart (location `2
1).396

Each instruction of the 2CM is encoded into a gadget connected with each other, for each397

of the three subparts.398

In the rest of the proof, we therefore give, for each instruction of the 2CM, one gadget399

for each of the three subparts. Obviously, the (unique) gPTA features a single clock (“x” in400

Figure 2e); however, for sake of readability, and for consistency with the encoding given in401

Lemma 11, we use clocks with different names in the 3 subparts: that is, the initial gadget in402

Figure 2e can be described by three gadgets for the three subparts, given in Figures 2b–2d,403

with clock names t, x1 and x2. Also recall that from Definition 6, clocks are not shared—they404

cannot be read from another process.405

Let us consider the increment gadget: the decomposition into three “subparts” (for each406

of the three processes) is given in Figures 3b–3d. An invariant “· · · ” denotes the fact that the407

actual invariant is given in the “next” gadget starting from that location. Note that it takes408

exactly p time units to move from qti to qtj . In addition, the outgoing transition from a given qti409

is always done in 0-time, which is enforced by the invariant t = 0; therefore, the location410

guard [qtj ] together with the guard x2 ≤ p is exactly equivalent to t = p ∧ x2 ≤ p, forcing411

the subparts simulating x1 and x2 to properly synchronize with the subpart simulating t (or412

getting stuck forever in `1
i or `2

i and blocking the whole computation). Therefore, all three413

gadgets synchronize as expected, simulating the original increment gadget in Figure 3a.414
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Let us now consider the 0-test and decrement gadget: the decomposition into three415

“subparts” (for each of the three processes) is given in Figures 4b–4d. This time, compared to416

the former gadgets, we need a better synchronization between gadgets to ensure the correct417

branching depending on the value of c1. If c1 = 0, then x1 = 0 when t = 0, and therefore418

the process simulating x1 can move in 0-time to `1
k, since qti is occupied; then, again in419

0-time, the process simulating t can move to `tk, ensuring the correct synchronization between420

both processes in the correct branch. Note that, because of the invariant in qti , the process421

simulating t can only stay 0 time unit in qti , and therefore in the process simulating x1 the422

guard x1 = 0 together with location guard [qtj ] is exactly equivalent to x1 = 0 ∧ t = 0, which423

correctly encodes the 0-test. Conversely, if c1 > 0, then the process simulating x1 can move424

in 0-time to `1
i1, since qti is occupied; then, again in 0-time, the process simulating t can425

move to `ti. Similarly, the process simulating x2 follows the right branch thanks to location426

guards [`ti] and [`tk]. The rest of the decrement part (from i to j) works similarly to the427

increment gadget, and the correctness argument is the same. Recall that the rest of the428

0-test gadget forces time to elapse for p units, without modifying the value of the three clocks429

when leaving the gadget (except of course for x1 in case of decrement). In particular, in the430

gadget simulating x2 (Figure 4d), x2 has exactly the same value when entering q2
k as when431

entering q2
i due to location guard [qtk], and the intermediate location resetting x2 when it is432

exactly p; the same holds in the decrement part of the gadget.433

In the encoding in the proof of Lemma 11, we showed that the 2CM reaches qhalt iff the434

location qhalt is reachable. Here, due to the split of the encoding into three subparts, we435

need a final gadget, given in Figure 2f (we assume the clock is reset when entering locations436

qthalt, q1
halt and q2

halt). In order for the first process to reach the (new) location qhalt, we need437

all three processes to reach their respective final location (i.e., qthalt, q1
halt and q2

halt) together,438

which is easily achieved thanks to the various location guards done in 0-time. (Note that this439

gadget actually allows all processes to reach qhalt; so far, we only need one process to do so.)440

Now, first note that the subpart simulating t progresses in its gadgets, only synchronizing441

with the two other processes in the initial and final gadgets, as well as in the 0-test and442

decrement. In contrast, the two subparts simulating x1 and x2 constantly synchronize with443

the location guards from the first subpart; while nothing forces them to take these transitions444

(notably those guarded by [qtj ]), failing in taking such a transition will immediately lead to445

a timelock due to the invariants and to the fact that the next time such a location guard446

will be available is necessarily in p time units. More in detail, recall that any guard location447

(location used in a location guard) qti in the subpart simulating t has an invariant t = 0, and448

only outgoing transitions guarded with t = 0. In addition, at least p time units must elapse449

between two guard locations in the subpart simulating t: so, due to the invariants in the two450

other subparts, failing to take a location guard renders impossible to take it the next time451

the first subpart will be in a guard location.452

For all these reasons, if one process reaches qhalt, then from Figure 2f, two other processes453

must have traversed the two other subparts (simulating x1 and x2) correctly, by synchronizing454

with the first process. Hence, the 2CM is correctly simulated.455

The rest of the reasoning follows the proof of Lemma 11: the 2CM halts iff there exists a456

parameter valuation v such that v(A)3 reaches qhalt. J457

We show that the absence of invariants does not avoid undecidability, for exactly 3 pro-458

cesses.459

I Proposition 14. Assume a gPTA A with a single clock and a single parameter, and ` one460

of its locations. Deciding the emptiness of the set of timing parameter valuations v for which461
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` is reachable in the NTA v(A)3 is undecidable, even without invariants, for all such A.462

Proof sketch. The idea is that, if a process “chooses” to not take some outgoing transition463

in the absence of invariants, then the whole computation is stuck, and qhalt is unreachable.464

Put it differently, while the absence of invariants may add some runs, none of these runs can465

reach qhalt, and the final correctness argument of the proof of Proposition 13 still holds. See466

Appendix A.1. J467

5.1.2 Undecidability for any fixed number of processes (with or468

without invariants)469

By modifying the constructions in the proof of Proposition 14, it is easy to show that, for470

any fixed number of processes n ≥ 3, the reachability-emptiness problem is undecidable, even471

without invariants. Note that our construction differs for any n ≥ 3, and hence this does472

not prove the undecidability of the parametrised-reachability-emptiness problem (which is473

actually decidable without invariants, see Theorem 20).474

I Proposition 15. Let A be a gPTA, and ` one of its locations. For any n ≥ 3, deciding475

the emptiness of the set of timing parameter valuations v for which ` is reachable in the476

NTA v(A)n is undecidable, even when A contains a single clock and a single parameter477

without invariants.478

Proof sketch. The idea is to reuse the construction of the proof of Proposition 14, by “killing”479

any process except 3 by sending them to “sink” locations. See Appendix A.2. J480

5.2 Parameterized reachability-emptiness with invariants481

Let us now consider the parametrised reachability-emptiness problem in PDTNs. In the482

absence of invariants, the 2CM encoding used in the previous proofs would become incorrect483

for a parametric number of processes: recall that we avoided the use of invariants by letting484

the system get stuck if a transition is not taken at the “right” time. However, in a system485

with a parametric number of processes, a single process that gets stuck will not cause the486

whole computation to get stuck, since another process may have taken the transition at487

the “right” time. Moreover, a process that gets stuck will ruin the synchronization that488

guarantees simulation of the 2CM, since now taking a transition with location guard [qti ] will489

be possible at any time after the process gets stuck in qti . We now prove that undecidability490

holds however with invariants.491

I Theorem 16. PR-emptiness is undecidable for general PDTNs, even with a single clock492

and a single parameter (with invariants).493

Proof sketch. We rely on the construction given in the proof of Proposition 13, and we show494

that any additional processes will just simulate one of the existing three processes, due to the495

presence of invariants. Most importantly, no process can remain “idle” in a location forever,496

and therefore the location guards still guarantee that the 2CM is simulated correctly. See497

Appendix A.3. J498

5.3 Parameterized global reachability-emptiness499

We show here that our former constructions can get rid of invariants providing we con-500

sider global properties. That is, without invariants, global properties make parametrised501

reachability-emptiness undecidable while it is decidable for local properties (see Section 6.3).502
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I Theorem 17. PGR-emptiness is undecidable for general PDTNs, even with a single clock503

and a single parameter, with or without invariants.504

Proof sketch. The proof technical idea is that we ask whether all processes can reach the505

target location qhalt, which can only be done if the 2CM was properly simulated. See506

Appendix A.4. J507

6 Decidability results508

We will first show that, for two subclasses of PDTNs, i.e., fully parametric PDTNs with509

a single parameter (Section 6.1) and L/U-PDTNs (Section 6.2), deciding PR-emptiness510

(resp. PGR-emptiness) is equivalent to checking parametrised reachability (resp. PGR) in a511

non-parametric DTN—which is decidable. The third positive result, addressing one clock,512

arbitrarily many parameters and no invariants (Section 6.3), is more involved and requires513

different techniques.514

6.1 Fully parametric PDTNs with a single parameter515

I Theorem 18. PR-emptiness (resp. PGR-emptiness) for fully parametric PDTNs with516

1 parameter and arbitrarily many clocks is equivalent to PR (resp. PGR) for DTNs.517

Proof sketch. The idea is to test the satisfaction of the property on only two non-parametric518

DTNs, viz., these valuating the only parameter with 0 and 1. We show that any other519

non-zero valuation is equivalent (up to rescaling) to the valuation 1: indeed, without constant520

terms in the model (other than 0), multiplying the value of the (unique) parameter by n will521

only impact the value of the duration of the runs by n, but will not impact reachability. See522

Appendix B.1. J523

6.2 L/U-PDTNs with arbitrarily many clocks and parameters524

Given d ∈ Z, let v0/d denote the valuation such that for all p ∈ PL, v(p) = 0 and for all525

p ∈ PU , v(p) = d. We will consider the special valuation v0/∞: strictly speaking, v0/∞ is not526

a proper parameter valuation due to ∞, but valuating a PTA with v0/∞ consists in removing527

the inequalities involving upper-bound parameters with a positive coefficient.528

I Theorem 19. PR-emptiness (resp. PGR-emptiness) for L/U-PDTNs is equivalent to PR529

(resp. PGR) for DTNs.530

Proof sketch. We first show that networks of L/U-gPTAs are monotonic: that is, given A531

an L/U-gPTA and v a parameter valuation, any computation of (v(A))n is a computation of532

(v′(A))n, for all v′ such that upper-bound parameters are larger than or equal to their value533

in v and lower-bound parameters are smaller than or equal to their value in v. We then show534

that, given ϕ a global reachability property over A, PGR-emptiness does not hold iff ϕ is535

satisfied in a configuration reachable in the DTN (v0/∞(A))∞, as this DTN contains the536

behaviours for all parameter valuations, due to the monotonicity. Therefore, deciding PGR-537

emptiness for L/U-PDTNs amounts to deciding satisfaction of ϕ in the DTN (v0/∞(A))∞; an538

additional technicality is necessary to show that if ϕ is satisfied in a configuration reachable539

in (v0/∞(A))∞, then it is also reachable in (v(A))∞ for some concrete (non-∞) parameter540

valuation v. See Appendix B.2. J541
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Table 1 Decidability of PR-e and PGR-e for PDTNs with 1 clock (
√

= decidability, × =
undecidability)

Local properties Global properties
Without invariants

√
Theorem 20 ×Theorem 17

With invariants ×Theorem 16 ×

Since PR and PGR can be solved in EXPSPACE and 2-EXPSPACE respectively in542

DTNs [13], then solving PR-emptiness and PGR-emptiness can be done with the same543

complexities for fully parametric PDTNs with a single parameter and for L/U-PDTNs.544

6.3 PDTNs with one clock, arbitrarily many parameters and no545

invariants546

Our last decidability result closes the gap of Section 5: while PR-emptiness for PDTNs even547

with a single clock and one parameter is undecidable for local properties with invariants,548

and is undecidable for global properties even without invariants, we show that the problem549

becomes decidable for local properties without invariants. This result highlights the power of550

invariants in PDTNs.551

I Theorem 20. PR-emptiness is decidable for PDTNs with a single clock, arbitrarily many552

parameters, and no invariants.553

Proof sketch. We use here a completely different construction: we write a formula in the554

existential fragment of the first order theory of the integers with addition (a.k.a. Presburger555

arithmetic) enhanced with the divisibility operand (a decidable logic [25]), which will include556

the computation of the reachable durations of the locations used in guards in parallel to the557

reachability of the final location. In order to write this formula, we rely on results relating558

affine parametric semi-linear sets (apSl sets), a parametric extension of semi-linear sets, to559

durations in a PTA. Solving PR-emptiness then boils down to deciding the truth of the560

formula. See Appendix B.3. J561

7 Conclusion562

We investigated models with uncertainty over timing parameters, and parametrised in563

their number of components. We showed that the emptiness of the parameter valuations564

set for which a given location is reachable for some number of processes is decidable for565

networks with a single clock in each process and arbitrarily many parameters, provided no566

invariants are used, and for local properties only; this positive result is tight, in the sense567

that adding invariants or considering global properties makes this problem undecidable.568

We summarize the results for 1 clock in Table 1. Beside emphasizing the strong power of569

invariants and global properties, our results show an interesting fact on the expressive power570

of the communication model: while reachability is decidable for PTAs with 1 or 2 clocks and571

one parameter [8, 15, 23], it becomes undecidable in our setting with a single parameter. We572

exhibited two further decidable subclasses, by restricting the use of the parameters, without573

restriction of the number of clocks and parameters.574

Perspectives. First, it can be easily shown that our negative results from Section 5 all575

hold as well over discrete time. Second, our undecidability results are expressed so far over576

integer-valued parameters. While the undecidability of integer-valued parameters implies577
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undecidability for rational-valued parameters, the case of bounded rational-valued parameters578

(e.g., in a closed interval) remains open; we conjecture it remains undecidable using a different579

encoding of our undecidability proofs. However, we have no hint regarding the extension580

of our decidable results (notably Theorem 20), as our proof techniques heavily rely on the581

parameter integerness. Whether extending the decidable case of Theorem 20 to two clocks582

preserves decidability remains open too.583

An interesting future work is the question of the parameter synthesis (for the decidable584

cases). That is, beyond deciding the emptiness of the valuations set for which some properties585

hold, can we synthesize them?586

Finally, considering universal properties is an interesting perspective: this can include587

the existence of a parameter valuation for which all numbers of processes satisfy a property588

or, conversely, the fact that all parameter valuations are such that some number of processes589

satisfies a property.590
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A Proofs of Section 5682

A.1 Proof of Proposition 14683

I Proposition 14. Assume a gPTA A with a single clock and a single parameter, and ` one684

of its locations. Deciding the emptiness of the set of timing parameter valuations v for which685

` is reachable in the NTA v(A)3 is undecidable, even without invariants, for all such A.686

Proof. Let us show that the absence of invariants in the proof of Proposition 13 does not687

harm the encoding of the 2CM. The overall idea is that, if a process “chooses” to not take some688

outgoing transition in the absence of invariants, then we show that the whole computation is689

stuck, and qhalt is unreachable. Put it differently, while the absence of invariants may add690

some runs, none of these runs can reach qhalt, and the final correctness argument of the proof691

of Proposition 14 still holds.692

In the initial gadget in Figure 2e, if the process encoding x1 (resp. x2) fails in taking the693

transition from `t0 to `1
1 (resp. from `t0 to `2

1) after exactly p time units, then the first process694

encoding t is stuck forever in `t1, and qhalt is unreachable.695

Now, consider the subpart encoding the clock t (in all gadgets): in the absence of696

invariants, no transition is forced to be taken. However, since all outgoing transitions from697

the qti locations are guarded by t = 0, staying more than 0 time unit blocks this process698

forever, and qhalt becomes unreachable. The same applies to intermediate locations, which699

all have tight guards (e.g., t = p). Therefore, to reach qhalt, then the process encoding clock t700

must take all its guards at the appropriate time—which we assume from now on.701

Then, consider the two subparts encoding clocks x1 and x2. For the same reason, failing702

in taking a transition will block the process forever and, due to the final gadget in Figure 2f703

ensuring transitions are guarded by x = 0, will block the first process, and therefore qhalt704

will be unreachable.705

This concludes the proof. J706

A.2 Proof of Proposition 15707

I Proposition 15. Let A be a gPTA, and ` one of its locations. For any n ≥ 3, deciding708

the emptiness of the set of timing parameter valuations v for which ` is reachable in the709

NTA v(A)n is undecidable, even when A contains a single clock and a single parameter710

without invariants.711

Proof. The idea is to reuse the construction of the proof of Proposition 14, by “killing” any712

process except 3 by sending them to “sink” locations, from which they cannot interfere with713

the encoding of the 2-counter machine. Fix n > 3. The modified initial gadget is given in714

Figure 5. The first three processes behave as in Figure 2e. Then, all remaining processes715

are sent to “sink” locations (`3
s to `n−1

s ); for one process i to reach its sink location `is, its716

predecessor i− 1 must have reached its own sink location `i−1
s , due to the location guard717

“[`i−1
s ]”. Finally note that the first process (simulating t) must make sure that the last process718

has reached its sink location (location guard “[`n−1
s ]”) before reaching the starting location qt0.719

This ensures that all processes i > 3 are in sink locations, where they cannot interfere with720

the encoding.721

The rest of the proof then follows the reasoning of the proof of Proposition 14. J722

CVIT 2016
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`t0 `t1 qt0

`1
1 q1

0

`2
1 q2

0

`3
s

· · ·

`n−1
s

x = p ∧ x > 1
x← 0

[`n−1
s ]
x = 0

[`t1]

x← 0
[qt0]
x = 0[`1

1]
x← 0

[qt0]
x = 0

[`2
1]

[`n−2
s ]

Figure 5 Modified initial gadget for exactly n processes

A.3 Proof of Theorem 16723

I Theorem 16. PR-emptiness is undecidable for general PDTNs, even with a single clock724

and a single parameter (with invariants).725

Proof. First note that, in order to traverse the gadgets from the proof of Proposition 13, one726

needs (at least) 3 processes, due to the interdependency between the location guards. We727

will show that any process beyond the 3 required processes can only “mimic” the behaviour728

of one of the 3 required processes.729

Consider a process beyond the first three processes. In the initial gadget (Figure 2e),730

it can “choose” any of the three branches leading to the three subparts, as the first three731

processes make them all available.732

First assume this extra process follows the first subpart, simulating clock t: observe that,733

in all the gadgets of the first subpart (Figures 2b, 3b, and 4b), the behaviour is almost734

completely deterministic (e.g., all locations with invariant “t ≤ p” are followed by a transition735

guarded by “t = p”). The only exception is in the branching to either `ti or `tk in Figure 4b;736

assuming exactly one of the location guards [`1
i1] or [`1

k] holds (which we discuss below), then737

this aforementioned extra process will follow exactly the behaviour of the first process.738

Alternatively, assume that this extra process follows the second subpart (simulating x1)739

and let us show that it will follow the second process (the third subpart is similar). In most740

locations of our gadgets (Figures 2c, 3c, and 4c), the outgoing guards are tight w.r.t. the741

invariant (e.g., invariant “x1 ≤ p+ 1” followed by a transition guarded by “x1 = p+ 1”), and742

this extra process is forced to follow the second process. In the remaining locations followed743

by non-tight guards (e.g., “x1 ≤ p” in the increment gadget in Figure 3c), the guard is always744

additionally guarded by the location guard [qtj ], which makes its behaviour deterministic745

since the processes simulating clock t are deterministic. Therefore, this extra process is again746

forced to follow the second process. The 0-test and decrement gadget is similar, with one747

additional crucial observation: since the aforementioned extra process mimicked the second748

process so far, then in q1
i , due to the location guard [qti ] ensuring a transition in 0-time, then749

either x1 = 0 or x1 > 0 holds, and therefore either both processes simulating x1 reach `1
i1,750

or both of them reach `1
k—which justifies the assumption made earlier.751

For these reasons, qhalt is reachable only if the first three processes correctly simulate the752

2CM; since any additional processes will just simulate one of the first three processes, we753
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can just apply the correctness argument from the proof of Proposition 13. J754

A.4 Proof of Theorem 17755

I Theorem 17. PGR-emptiness is undecidable for general PDTNs, even with a single clock756

and a single parameter, with or without invariants.757

Proof. We prove the result without invariants. (The case with invariants is simpler and758

follows immediately.)759

The idea is that we ask whether all processes can reach the target location qhalt, which can760

only be done if the 2CM was properly simulated. First note that asking whether all processes761

can reach the target location qhalt is a property satisfying the definition of global property in762

Section 4, by simply checking that the number of all locations but qhalt is exactly 0 (called763

“target problem”).764

As in the proof of Theorem 16, in order to traverse the gadgets from the proof of765

Proposition 13, one needs (at least) 3 processes, due to the interdependency between the766

location guards. We show here that any process beyond the 3 required processes can only767

“mimic” the behaviour of one of the 3 required processes, or block the system due to a768

timelock if it fails to correctly mimic it.769

First note that if any of the first three processes does not correctly encode the 2CM770

(which is a possibility due to the absence of invariants), then an outgoing guard will not771

be firable, and therefore this process will be blocked forever in its current location, and the772

global property that all processes must reach qhalt cannot hold. So we assume that the first773

three processes correctly encode the 2CM (w.l.o.g. we assume that process i encodes the i-th774

subpart).775

Now consider a process beyond the first three processes. In the initial gadget (Figure 2e),776

it can “choose” any of the three branches leading to the three subparts, as the first three777

processes make them all available. Due to the absence of invariants, the process can also778

choose to not pass the initial gadget—but failing to take such a guard will block it forever in779

a location due to the guards x = 0, and the global property that all processes must reach qhalt780

will never hold.781

First assume this extra process follows the first subpart, simulating clock t: just as in the782

proof of Theorem 16, because in all the gadgets of the first subpart (Figures 2b, 3b, and 4b),783

the guards are always punctual (i.e., involve equalities), then this extra process will either784

follow exactly the behaviour of the first process, or fail in taking some guard—therefore785

remaining forever in its location and violating the global reachability property.786

Alternatively, assume that this extra process follows the second subpart (simulating x1).787

As in the former reasoning, either that extra process will exactly mimic the behaviour of the788

second process, or will fail in taking some guard, and therefore being blocked in its location,789

thus violating again the global reachability property.790

The case of the final gadget is similar: if any of the processes arrive too early or too late,791

they will be blocked due to the urgent guards (of the form x = 0 together with the location792

guards), and the global reachability will be violated.793

For these reasons, qhalt is reachable only if the first three processes correctly simulate the794

2CM and if all additional processes simulate exactly one of the first three processes. Finally,795

we can again apply the correctness argument from the proof of Proposition 14. J796

CVIT 2016
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B Proofs of Section 6797

B.1 Proof of Theorem 18798

I Theorem 18. PR-emptiness (resp. PGR-emptiness) for fully parametric PDTNs with799

1 parameter and arbitrarily many clocks is equivalent to PR (resp. PGR) for DTNs.800

Proof. Let A be a fully parametric gPTA with 1 parameter p. A∞ is therefore a fully801

parametric PDTN. Let v0 and v1 denote the valuations such that v0(p) = 0 and v1(p) = 1.802

We prove the result for global reachability properties (PGR-emptiness), as local properties803

are a subcase. Fix a global property ϕ. Let us show that PGR-emptiness does not hold iff ϕ804

is satisfied in a configuration reachable in (v0(A))∞ or in (v1(A))∞.805

The following lemma derives easily from [24, Proposition 4.7], adapted to the semantics806

of NTAs (Section 3), and comes from the fact that, whenever no constant terms are used in a807

gPTA, then rescaling the parameter valuation does not impact the satisfaction of reachability808

properties.809

I Lemma 21 (Multiplication of constants). Let A be a fully parametric gPTA with a single810

parameter p. Fix n ∈ N. Let ϕ be a global property. Then for all parameter valuations v,811

a configuration c with c |= ϕ is reachable in (v(A))n iff ∀t ∈ Q>0 such that t× v(p) ∈ N, a812

configuration c′ with c′ |= ϕ is reachable in ((t× v)(A))n, where t× v denotes the valuation813

such that (t× v)(p) = t× (v(p)).814

We can now proceed to the proof of Theorem 18.815

⇒ Assume PGR-emptiness does not hold for A∞, i.e., there exists v such that there exists816

n ∈ N>0 such that ϕ is satisfied in a reachable configuration in (v(A))n. Let us show817

that ϕ is satisfiable in a configuration reachable in (v0(A))n or in (v1(A))n.818

If v(p) = 0, then the result is immediate. If v(p) 6= 0, then from Lemma 21, ϕ is satisfied819

in a configuration reachable in (v1(A))n (by choosing some appropriate t, i.e., 1
v(p) ).820

⇐ Assume ϕ is satisfied in a reachable configuration in (v0(A))∞ or in (v1(A))∞. That821

is, there exists n ∈ N>0 such that there is a computation π of (v0(A))n or of (v1(A))n822

reaching a configuration c s.t. c |= ϕ. Therefore PGR-emptiness does not hold.823

Therefore, it suffices to test the satisfaction of ϕ in (v0(A))∞ and (v1(A))∞.824

Finally, the hardness argument is immediate, considering a PDTN without parameter,825

and replacing constants different from 1 with additional clocks and locations. J826

B.2 Proof of Theorem 19827

Recall that P = PL ] PU . Given v, v′, we write v′ � v whenever ∀p ∈ PL, v′(p) ≤ v(p) and828

∀p ∈ PU , v′(p) ≥ v(p).829

I Lemma 22 (Monotonicity). Let A be an L/U-gPTA. Let v be a parameter valuation. For830

any v′ such that v′ � v, for any n ∈ N>0, any computation of (v(A))n is a computation of831

(v′(A))n.832

Proof. From the fact that any valuation v′ � v will only add behaviours due to the enlarged833

guards. J834

I Theorem 19. PR-emptiness (resp. PGR-emptiness) for L/U-PDTNs is equivalent to PR835

(resp. PGR) for DTNs.836
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Proof. We prove the result for global reachability properties (PGR-emptiness), as local837

properties are a subcase. Let A be an L/U-gPTA and ϕ a global reachability property838

over A. A∞ is therefore an L/U-PDTN. Consider the DTN (v0/∞(A))∞. Let us show that839

PGR-emptiness does not hold iff ϕ is satisfied in a configuration reachable in (v0/∞(A))∞.840

⇒ Assume PR-emptiness does not hold for A∞, i.e., there exists v such that there exists841

n ∈ N>0 such that ϕ is satisfied in (v(A))n. That is, there exists a computation π842

of (v(A))n reaching a configuration c such that c |= ϕ. From Lemma 22, π is a computation843

of (v′(A))n, for any v′ � v. And by extension, completely removing the upper-bound844

guards (i.e., valuating upper-bound parameters with ∞) only adds behaviour, and845

therefore π is a computation of (v0/∞(A))n. Hence c is reachable in (v0/∞(A))∞, and846

hence ϕ is satisfied.847

⇐ Assume there exists a configuration c reachable in (v0/∞(A))∞ such that c |= ϕ. That848

is, there exists n ∈ N>0 such that there is a computation π of (v0/∞(A))n reaching849

a configuration c s.t. c |= ϕ. Now, v0/∞ is not a proper parameter valuation, so we850

need to exhibit a parameter valuation assigning to each parameter an integer value. We851

reuse the same concrete parameter valuation for upper-bound parameters as exhibited852

in [24, Proposition 4.4]: let T ′ be the smallest constant occurring in the L/U-gPTA A,853

and let T be the maximum clock valuation along π. Fix D = T + |T ′| + 1. (We add854

T ′ to compensate for potentially negative constant terms “d” in guards and invariants855

of A.) Since the maximum clock valuation along π is T , any guard of the form x ≤856 ∑
1≤i≤M αi × pi + d, that was replaced with x <∞ in (v0/∞(A))n, can be equivalently857

replaced with x ≤
∑

1≤i≤M αi ×D + d without harming the satisfaction of the guard.858

Therefore, c is reachable in (v0/D(A))n, and hence in (v0/D(A))∞. Therefore, since c |= ϕ,859

PGR-emptiness does not hold.860

Therefore, deciding PGR-emptiness for L/U-PDTNs amounts to deciding satisfaction of ϕ in861

the DTN (v0/D(A))∞.862

The case of local properties follows a similar reasoning. J863

B.3 Proof of Theorem 20864

I Theorem 20. PR-emptiness is decidable for PDTNs with a single clock, arbitrarily many865

parameters, and no invariants.866

In [12], the shortest time to reach a location could be computed, allowing to replace the867

location guards one by one. That is, for each location appearing in a location guard, we send868

one process to this location as quickly as possible, and which then remains in this location869

forever. Hence, from the time this location can be reached, the location guard remains870

satisfied forever. Note that this method only works thanks to the absence of invariants—which871

allows processes to “die” in every location.872

However, this method cannot be reused here in the presence of parameters, as the notion873

of a “shortest time” is not entirely well-defined in this setting. As such, we do not want874

to remove the location guards once at a time. Instead, we will write a formula of the first875

order theory of the integers with addition (a.k.a. Presburger arithmetic) enhanced with the876

divisibility operand, which will include the computation of the reachable durations of the877

locations used in guards in parallel to the reachability of the final location. Hence, solving878

PR-emptiness will boil down to deciding the truth of the formula.879

In order to write this formula, we rely on results relating affine parametric semi-linear880

sets (apSl sets), a parametric extension of semi-linear sets, to durations in a PTA. An apSl881

sets is a function associating to a vector of parameter values p a semi-linear set of vectors of882
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integers. We will not need the specific shape of apSl sets here, but instead two important883

properties they have.884

First, given a PTA A with one clock and arbitrarily many parameters and given two885

locations `, `′ of A, one can compute [10] the set of parametric durations of runs reaching886

`′ from `, and represent it using a one-dimensional apSl set. It is interesting to note that887

the apSl set representation only contain integers, while the actual durations are a set of real888

values. The idea of the apSl representation is that the value 2i is in S(p) iff the integer i889

is a reachable duration, and 2i+ 1 is in S(p) iff all the values of the interval (i, i+ 1) are890

reachable durations. This representation hence strongly requires that the parameters range891

over integers. We also note that the construction of this apSl set can easily be modified so892

that given two locations `, `′ and n edges t1, . . . , tn of A, one could include the information893

of when the edge t1 was crossed on the way to `′ for the first time. For instance, if n = 1,894

(2i+ 1, 2j) belongs to the corresponding apSl set iff `′ can be reached from ` in j time units,895

and a path achieving this takes t1 for the first time during the interval (i, i+ 1).896

Second, it was also shown in [10] that given an apSl set S, one can build a formula in897

the existential fragment of Presburger arithmetic with divisibility (a decidable logic [25]) φS898

such that given parameter values p, S(p) is not empty iff ∃x ∈ φS(x,p) is true.899

We can now move to the proof.900

Proof. Let A = (Σ, L, `0, {x},P, I, E) be a gPTA and `f be a target location.901

We first guess a sequence e1, . . . , em of different edges of E which contains a location902

guard (we trivially have that m ≤ |E|). These are intuitively the edges with location guards903

which will be needed, either by the process reaching `f , or by the processes which will reach904

the locations used in location guards. We assume these edges are ordered by the date at905

which they will be taken for the first time. In practice, this guess can be achieved by complete906

enumeration.907

For all i ≤ m, we set `i to be the location appearing in the guard of edge ei and908

set `m+1 = `f . In order to reach `i, some edges from e1, . . . ei−1 may be needed. Let909

ejr
1
, . . . , ejr

mi
be those edges, in the order they first appear in the run. We build the PTA910

Ai = (Σ, Li, (`0, 0), (`i,mi), {x},P, Ii, Ei) where911

Li =
{

(`, k) | ` ∈ L ∧ k ∈ {0, . . . ,mi}
}
,912

for any (`, k) ∈ L′, Ii(`, k) = I(`),913 (
(`, k), g, a, R, (`′, k′)

)
∈ E′ iff there exists e = (`, g, γ, a, R, `′) ∈ E such that one of the914

following holds915

k = k′ and γ = > or there exists r ≤ k such that e = eji
r
,916

k′ = k + 1 and e = ejr
k+1

.917

In other words, Ai consists in mi + 1 successive copies of A where the k’th copy blocks every918

edge with location guard except eir with r ≤ k + 1, and in particular taking eik+1 leads to919

the next copy. This way, a run of Ai ending in the final location is forced to follow the920

guessed structure with respect to the usage of edges with location guards. It however loses921

information about when those edges are available.922

By applying the previously mentioned result from [10, 26], we can build a semilinear923

set Ti of mi + 1-tuples parametric values representing the durations of runs going from (`0, 0)924

to (`i,mi), storing the intervals of the first firing of the edges ejrs .925

As previously mentioned, the construction of Ti does not take into account the constraints926

brought by the location guards. Assuming that for k < i location `k is reached at time hi(p),927
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we can see that deciding the existence of parameter values p such that `i is reached in A is928

equivalent to solving the formula2929

∃p,∃d1, d
′
1, . . .dmi+1, d

′
mi+1,(d1p + d′1, . . . ,dmi+1p + d′mi+1) ∈ Ti,930

mi∧
k=1

dji
k
p + d′ji

k
≥ hji

k
(p)931

932

Moreover, note that the value dmi+1p + d′mi+1 built here is a possible value for hi+1(p).933

Hence by combining the formulas obtained for each i, removing the comparison to hi934

(which becomes redundant once the variables are shared by every formula), and verifying935

that the orders of each formula is compatible3 we have that PR-emptiness is equivalent to936

the falsity of937

∃p,∃d1, d
′
1, . . .dm+1, d

′
m+1,

m+1∧
i=1

(djr
1
p + d′jr

1
, . . . ,djr

mi
p + d′jr

mi
,dip + d′i) ∈ Ti.938

From [25], as this formula is expressed in the existential fragment of Presburger arithmetic939

with divisibility, it is decidable. J940

I Remark 23. Let us quickly discuss the complexity of this algorithm. The formulas produced941

by [10] are at worst doubly exponential. The modifications we apply to them, combining942

a polynomial number of those formulas, remains doubly exponential. We then rely on the943

decidability of the existential fragment of Presburger arithmetic with divisibility which can944

be solved in NEXPTIME [25]. The nondeterminism allowed through this last step combines945

with the nondeterministic guesses of transition sequences without additional cost. As a946

consequence, our algorithm lies in 3-NEXPTIME.947

2 The characters in bold are vectors of variables. In order to avoid complexifying the formula, we did not
indicate the transformation from row to column vector which is necessary to multiply the two vectors
and produce a single term.

3 For example, if the path to location ` goes through a location guard on `′, then ` cannot reciprocally be
on a location guard encountered on the way to `′. This condition on order is not directly handled in
the formula in the case where both location guards can be reached within the same interval of time.
A more precise decomposition of time units, would allow including this condition into the formula.
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