
Execution-time opacity control for timed automata

Étienne André1,2†, Marie Duflot3†, Laetitia Laversa4†, Engel Lefaucheux3†

1CNRS, Laboratoire d’Informatique de Paris Nord, LIPN, Université Sorbonne Paris Nord,
Av. Jean-Baptiste Clément, Villetaneuse, F-93430, France.

2Institut Universitaire de France (IUF), France.
3Université de Lorraine, CNRS, Inria, LORIA, France.

4Université Paris Cité, CNRS, IRIF, F-75013, Paris, France.

†These authors contributed equally to this work.

Abstract
Timing leaks in timed automata (TA) can occur whenever an attacker is able to deduce a secret by
observing some timed behaviour. In execution-time opacity, the attacker aims at deducing whether a
private location was visited, by observing only the execution time. In earlier work, it was shown that it
can be decided whether a TA is opaque in this setting. In this work, we address control, and investigate
whether a TA can be controlled by a strategy at runtime to ensure opacity, by enabling or disabling
some controllable actions over time. We first show that, in general, it is undecidable to determine
whether such a strategy exists. Second, we show that deciding whether a meta-strategy ensuring
opacity exists can be done in EXPSPACE. Such a meta-strategy is a set of strategies allowing an
arbitrarily large—yet finite—number of strategy changes per time unit, and with only weak ordering
relations between such changes. Our method is constructive, in the sense that we can exhibit such a
meta-strategy. We also extend our method to the case of weak opacity, when it is harmless that the
attacker deduces that the private location was not visited. Finally, we consider a variant where the
attacker cannot have an infinite precision in its observations.

Keywords: timed automata, opacity, side-channel attacks, timed control

1 Introduction1

In order to infer sensitive information, side-2

channels attacks [Sta10] exploit various observable3

aspects of a system rather than directly exploit-4

ing its computational processes; such observable5

aspects can include power consumption, electro-6

magnetic emissions, or time. In particular, by7

observing subtle differences in timing, attackers8

can infer valuable information about the internal9

state of the system. For example, in [CHS+22],10

a timing attack vulnerability is identified in the11

Chinese public key cryptography standard; the12

authors show how the most significant zero-bit 13

leakage obtained from the execution time allows 14

to extract the secret key. 15

Timing attacks such as timing leaks often 16

depend on the precise duration of operations, 17

which finite-state automata cannot model. Timed 18

automata [AD94] (TAs), on the other hand, incor- 19

porate explicit clocks and timing constraints, 20

making them essential for analysing and detect- 21

ing vulnerabilities related to timing information. 22

TAs are a powerful formalism to reason about 23

real-time systems mixing timing constraints and 24

concurrency. Timing leaks can occur whenever an 25

1



attacker is able to deduce a secret by observing1

some (timed) behaviour of a TA.2

1.1 Related works3

Opacity in timed automata4

Franck Cassez proposed in [Cas09] a first defini-5

tion of timed opacity for TAs: the system is opaque6

when an attacker can never deduce whether some7

secret sequence of actions (possibly with times-8

tamps) was performed, by only observing a given9

set of observable actions together with their times-10

tamp. It is then proved in [Cas09] that it is11

undecidable whether a TA is opaque. This notably12

relates to the undecidability of timed language13

inclusion for TAs [AD94]. The undecidability of14

opacity is strong: it holds even for the restricted15

class of event-recording automata [AFH99]—a16

subclass of TAs for which language inclusion is17

actually decidable.18

The aforementioned negative result leaves19

hope only if the definition or the setting is20

changed, which was done in four main lines of21

work.22

First, in [WZ18, WZA18], the input model23

is simplified to real-time automata [Dim01], a24

restricted formalism compared to TAs: real-time25

automata can be seen as TAs with a single26

clock, reset at each transition. [LLHL22] works27

on constant-time labeled automata, a subclass of28

real-time automata where events occur at con-29

stant values. In this setting, initial-state opacity30

(“according to the observations, what was the31

initial state?”) and current-state opacity (“accord-32

ing to the observations, what is the current33

location?”) become decidable. In [Zha24], Zhang34

studies labelled real-timed automata (a subclass35

of labelled TAs); in this setting, state-based (at36

the initial time, the current time, etc.) opacity is37

proved to be decidable by extending the observer38

(that is, the classical powerset construction) from39

finite automata to labelled real-timed automata.40

Second, in [AGW+24, ADL24], the opacity41

was studied in the setting of Cassez’ defini-42

tion, but with restrictions in the model: one-43

clock automata, one-action automata, or over44

discrete time. Similarly, in [KKG24], discrete-time45

automata with several clocks are considered and46

transformed into tick automata in order to ver-47

ify the current-state opacity. The discrete time48

setting yields decidability, while restricting the49

number of actions to 1 preserves undecidability; 50

for a single clock, decidability can only be envi- 51

sioned without silent actions [ADL24] (allowing 52

silent actions or allowing two clocks immediately 53

leads to undecidability). 54

Third, in [AETYM21], the authors consider 55

a time-bounded notion of the opacity of [Cas09], 56

where the attacker has to disclose the secret before 57

a deadline, using a partial observability. This can 58

be seen as a secrecy with an expiration date. The 59

rationale is that retrieving a secret “too late” 60

is useless; this is understandable, e.g., when the 61

secret is the value in a cache; if the cache has 62

been overwritten since, then knowing the secret 63

is probably useless in most situations. In addi- 64

tion, the analysis is carried over a time-bounded 65

horizon; this means there are two time bounds 66

in [AETYM21]: one for the secret expiration date, 67

and one for the bounded-time execution of the sys- 68

tem. Deciding opacity in this setting is shown to 69

be decidable for TAs. 70

Fourth, in [ALL+23], an alternative defini- 71

tion to Cassez’ opacity is proposed, by studying 72

ET-opacity (execution-time opacity): the attacker 73

has only access to the execution time of the 74

system, as opposed to Cassez’ partial observa- 75

tions where some events (with their timestamps) 76

are observable. The goal for the attacker is to 77

deduce whether a special secret location was vis- 78

ited, by observing only the execution time. In 79

that case, most problems for TAs become decid- 80

able, including some problems when introducing 81

an expiration date [ALM23] (see [ALL+23] for a 82

survey). Our current work fits in this ET-opacity 83

context, with the additional goal to control the 84

system. 85

Opacity in other formalisms 86

Different variants of opacity are also studied for 87

other types of systems, such as stochastic sys- 88

tems. In this case, we can quantify the probability 89

that a system is opaque [BMS15]. In particu- 90

lar, opacity can be related to the bandwidth of 91

a language [JIDA22, ADDJI23] used to encode 92

information by the delay necessary to produce it. 93

Non-interference in timed automata 94

Several works address non-interference for TAs. 95

In this context, actions are either high-level or 96

low-level, and only low-level actions are observ- 97

able. A TA satisfies non-interference whenever 98

2



its behaviour in absence of high-level actions is1

equivalent to the observation of its behaviour2

when high-level actions occur. Different notions3

of equivalence (e.g., bisimulation) can be consid-4

ered for this property. Several papers [BFST02,5

BT03, AK20] present some decidability results,6

while control is considered in [BCLR15].7

General security problems for TAs are sur-8

veyed in [AA23].9

Control10

A preliminary version of control for ET-opacity11

in TAs was considered in [ABLM22], but only12

untimed, i.e., the actions could only be enabled or13

disabled once and for all, thus severely restricting14

the possibilities to render the system ET-opaque.15

In addition, [ALL+23] considers parametric ver-16

sions of the opacity problems, in which tim-17

ing parameters [AHV93] can be used in order18

to make the system ET-opaque. This paramet-19

ric analysis was then used for the analysis of20

C code [ABC+25]. Our notion of control is orthog-21

onal to parameter synthesis, as another way to22

ensure the system becomes ET-opaque.23

Controller synthesis can be described and24

solved thanks to game theory; finding a strategy25

for a controller can be equivalent to comput-26

ing a winning strategy in a corresponding game.27

Several game models have been considered, as28

timed games that can be used to solve synthe-29

sis problem on TAs. In this context, [AMPS98]30

aims to restrict the transition relation in order31

to satisfy certain properties, while [JT07] com-32

pletes this result, minimizing the execution time,33

and [BFM15] studies the reachability with robust34

strategies only.35

1.2 Contributions36

In this work, we aim at tuning a system to make37

it ET-opaque, by controlling it at runtime.38

Our attacker model is as follows: the attacker39

has a knowledge of the system model, but can only40

observe the execution time. This can correspond41

to an attacker observing the energy consumption42

of a device, clearly denoting the execution time of43

a program or process; or to an attacker observing44

communications over a shared network, with an45

observable message acknowledging the end of exe-46

cution. The attacker aims at deducing—only by47

observing the execution time—whether a special 48

secret location was visited. 49

As usual, we consider that the system actions 50

are partitioned between controllable and uncon- 51

trollable. Our controller relies on the following 52

notion of strategy: at each timestamp, the strat- 53

egy enables only a subset of the controllable 54

actions. 55

We mainly consider in this paper full ET- 56

opacity, i.e., whenever the durations correspond- 57

ing to executions visiting the secret location 58

match the durations corresponding to executions 59

not visiting the secret location. Our first contribu- 60

tion is to show that the full ET-opacity strategy 61

emptiness problem, i.e., the emptiness of the set of 62

strategies such that a TA is fully ET-opaque with 63

such a strategy, is undecidable. Second, we move 64

to a weaker version, that of meta-strategies, i.e., 65

sets of strategies that specify a finite number of 66

strategy changes per time unit, but not the precise 67

time at which those changes take place. In that 68

case, we show that not only the full ET-opacity 69

meta-strategy emptiness problem is decidable in 70

EXPSPACE, but our approach is also constructive, 71

in the sense that we can build such a controller (in 72

2EXPTIME). Our technique relies on a novel ad- 73

hoc construction inspired by the region automaton 74

for TAs. 75

Depending of the system, various degrees of 76

opacity can be interesting, and we therefore con- 77

sider several variants introduced in [ALL+23] 78

as our third contribution: in addition to full 79

ET-opacity (the durations corresponding to exe- 80

cutions visiting the secret location match the 81

durations corresponding to executions not visit- 82

ing the secret location), we also consider weak 83

ET-opacity (the durations corresponding to exe- 84

cutions visiting the secret location are included in 85

the durations corresponding to executions not vis- 86

iting the secret location), and we briefly discuss 87

∃-ET-opacity (in which we are simply interested in 88

the existence of one execution time for which opac- 89

ity is ensured). We show that, for both variants, 90

the meta-strategy emptiness problem is decidable. 91

Finally, and as a fourth contribution, we 92

address the case when the attacker cannot have an 93

infinite precision in its observations, i.e., enhanc- 94

ing our method with a notion of robustness. 95

3



About this manuscript1

This manuscript is an extended version of2

the paper published in the proceedings of3

SEFM 2024 [ADLL24]. We list the enhancements4

(and differences) with respect to the conference5

version:6

1. We add the missing proofs of all results, and7

additional examples;8

2. We correct the previous construction9

from [ADLL24], adding the notion of meta-10

strategy and, on the one hand, we prove the11

undecidability of the general problem of the12

existence of a strategy making the system13

fully ET-opaque while, on the other hand,14

we prove the decidability of the existence of15

a meta-strategy;16

3. We investigate control with respect to weak17

ET-opacity and ∃-ET-opacity;18

4. We investigate several robust definitions of19

ET-opacity and add details and proofs for20

results already stated in [ADLL24];21

5. We rename “bad beliefs” into “leaking22

beliefs”.23

1.3 Outline24

Section 2 recalls the necessary material. Section 325

defines the control problem for ET-opacity.26

Section 4 proves our main undecidability result.27

We then introduce the core of our decidable28

approach: Section 5 introduces the notion of belief29

automaton, while Section 6 solves the ET-opacity30

problems thanks to this notion. Section 7 then31

extends our approach to existential and weak32

opacity. The last contribution in Section 8 consid-33

ers an attacker which cannot have an infinite pre-34

cision in observing the execution time. Section 935

highlights future works.36

2 Preliminaries37

Let N, Z, Q≥0, R≥0, R>0, R<0 denote the sets38

of non-negative integer numbers, integer numbers,39

non-negative rational numbers, non-negative real40

numbers, positive real numbers and negative real41

numbers respectively.42

Clock constraints43

Clocks are real-valued variables that all evolve44

over time at the same rate. Throughout this45

paper, we assume a set X = {x1 , . . . , xH} of clocks.46

A clock valuation is a function µ : X → RH≥0, 47

assigning a non-negative real value to each clock. 48

Given R ⊆ X, we define the reset of a valuation µ 49

with respect to R, denoted by [µ]R, as follows: 50

[µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) other- 51

wise. We write ~0 for the clock valuation assigning 52

0 to all clocks. Given a constant d ∈ R≥0, µ + d 53

denotes the valuation s.t. (µ + d)(x) = µ(x) + d, 54

for all x ∈ X. 55

We assume ./ ∈ {<,≤,=,≥, >}. A con- 56

straint C is a conjunction of inequalities over X of 57

the form x ./ d, with d ∈ Z. 58

A table of the notations used throughout this 59

paper is available in Appendix A. 60

2.1 Timed automata 61

Syntax of TAs 62

We define timed automata as in [AD94], with 63

an extra private location as in [ALL+23], which 64

encodes the secret that shall not be leaked. 65

Definition 1 (Timed automaton). A 66

timed automaton (TA) A is a tuple 67

A = (Σ, L, `0, `priv, F,X, I, E) where: 68

1. Σ is a finite set of actions, 69

2. L is a finite set of locations, 70

3. `0 ∈ L is the initial location, 71

4. `priv ∈ L is the private location, 72

5. F ⊆ L \ {`priv} is the set of final locations, 73

6. X = {x1 , . . . , xH} is a finite set of clocks, 74

7. I is the invariant, assigning to every ` ∈ L a 75

constraint I(`), 76

8. E is a finite set of edges e = (`, g, a, R, `′) 77

where `, `′ ∈ L are the source and target loca- 78

tions, a ∈ Σ∪{ε}, where ε denotes the silent 79

action, R ⊆ X is a set of clocks to be reset, 80

and g is a constraint over X (called guard). 81

� 82

Example 1. Fig. 1a depicts a TAA1 with a single 83

clock x, where Σ = {a, b, u}. The edge e1 between 84

the initial location `0 and the private location `priv 85

is available only when the valuation of x equals 0. 86

The edge e6 between `0 and `2 resets x. 87

� 88

Since we are only interested in the (first) 89

arrival time in a final location, the following 90

assumption does not restrict our framework, but 91

simplifies the subsequent definitions and results. 92

Assumption 1. We consider every final location 93

as urgent (where time cannot elapse): formally, 94

there exists x ∈ X such that, for all (`, g, a, R, `′) ∈ 95

4



E, `′ ∈ F , we have x ∈ R and “x = 0” ∈ I(`′).1

Moreover, final locations cannot have outgoing2

transitions: formally, there is no (`, g, a, R, `′) ∈ E3

s.t. ` ∈ F .4

Semantics of TAs5

Definition 2 (Semantics of a TA). Let6

A = (Σ, L, `0, `priv, F,X, I, E) be a TA. The7

semantics of A is given by the timed transition8

system TTSA = (S, s0,Σ ∪ R≥0, δ), with9

1. S =
{

(`, µ) ∈ L× RH≥0 | µ |= I(`)
}
,10

2. s0 = (`0,~0),11

3. δ consists of the discrete and (continuous)12

delay transition relations:13

(a) discrete transitions: (`, µ) e7→ (`′, µ′), if14

(`, µ), (`′, µ′) ∈ S, and there exists e =15

(`, g, a, R, `′) ∈ E, such that µ′ = [µ]R,16

and µ |= g.17

(b) delay transitions: (`, µ) d7→ (`, µ+d), with18

d ∈ R≥0, if ∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.19

�20

We write (`, µ) d,e−−→ (`′, µ′) for a combination21

of a delay and a discrete transitions when ∃µ′′ :22

(`, µ) d7→ (`, µ′′) e7→ (`′, µ′).23

Given a TA A with semantics24

(S, s0,Σ ∪ R≥0, δ), a run of A is a finite alter-25

nating sequence of states of TTSA and pairs26

of delays and edges starting from the ini-27

tial state s0 of the form s0, (d0, e0), s1, . . . , sn28

where for all i < n, ei ∈ E, di ∈ R≥029

and si
di,ei−−−→ si+1. The duration of a run30

ρ = s0, (d0, e0), s1, . . . , (dn−1, en−1), sn is31

dur(ρ) =
∑

0≤i≤n−1 di. We define last(ρ) = sn.32

Extra clock33

We will need an extra clock z that will help us34

later to keep track of the elapsed absolute time.35

This clock is reset exactly every 1 time unit, and36

therefore each reset corresponds to a “tick” of the37

absolute time. (Note that its actual value remains38

in [0, 1] and therefore always matches the frac-39

tional part of the absolute time.) In all subsequent40

region constructions, we assume the existence of41

z ∈ X. For each location `, we add the constraint42

“z ≤ 1” to I(`), and we add a self-loop edge43

(`, z = 1, ε, {z}, `).44

2.2 Regions 45

Given a TA A, for a clock xi, we denote 46

by ci the largest constant to which xi is 47

compared within the guards and invariants 48

of A: formally, ci = maxj{dj | xi ./ 49

dj appears in a guard or invariant of A}. Given a 50

clock valuation µ and a clock xi, bµ(xi)c (resp. 51

fr (µ(xi))) denotes the integral (resp. fractional) 52

part of µ(xi). 53

We now recall the equivalence relation between 54

clock valuations. 55

Definition 3 (Equivalence relation [AD94]). Two 56

clocks valuations µ, µ′ are equivalent, denoted by 57

µ ≈ µ′, when the following three conditions hold 58

for any clocks xi, xj ∈ X: 59

1. bµ(xi)c = bµ′(xi)c or µ(xi) > ci and µ′(xi) > 60

ci; 61

2. if µ(xi) ≤ ci and µ(xj) ≤ cj : fr (µ(xi)) ≤ 62

fr (µ(xj)) iff fr (µ′(xi)) ≤ fr (µ′(xj)); and 63

3. if µ(xi) ≤ ci: fr (µ(xi)) = 0 iff fr (µ′(xi)) = 0. 64

� 65

In other words, two valuations are equivalent 66

when, for a given clock, the integral part is the 67

same in both valuations or greater than the largest 68

constant in both valuations (Item 1), for any two 69

clocks, the fractional parts are in the same order 70

in the two valuations (Item 2), and the fractional 71

part is zero in both valuations or neither (Item 3). 72

The equivalence relation ≈ is extended to the 73

states of TTSA: given two states s = (`, µ), s′ = 74

(`′, µ′) of TTSA, we write s ≈ s′ iff ` = `′ and 75

µ ≈ µ′. We denote by [s] and call region the equiv- 76

alence class of a state s for ≈. Then, s′ ∈ [s] when 77

s ≈ s′. The set of all regions of A is denoted RA. 78

A region r = [(`, µ)] is final whenever ` ∈ F . The 79

set of final regions is denoted by RFA. A region r 80

is reachable when there exists a run ρ such that 81

last(ρ) ∈ r. 82

Region automaton 83

We now define a region automaton inspired by 84

[BDR08, Proposition 5.3] with two-component 85

labels on the transitions : the first component indi- 86

cates how the fractional part of z evolved, with 87

symbol “0” corresponding to an absence of change, 88

symbol “0+” corresponding to a change remain- 89

ing in (0, 1) and symbol “1” corresponding to a 90

change where the fractional part either starts or 91

ends at 0. The second component is either ε if the 92

transition represents time elapsing in the TA, or 93

5



`0

`priv

`1

`2 `3

`f

e3
x = 1

u
x← 0

e1

x = 0
u

a
e4

bx←
0

e6

e2x = 0u

b
e5

e7
x = 0

a

u
e 8

(a) TA A1

`0

`priv

`1

`2 `3

`f

`p0

`ppriv

`p1

`p2 `p3

`pf

x = 1
u

x← 0
x = 0

u a

x← 0
b

b

x = 0
a

u

x
= 0

u

x = 1
u

x← 0
x = 0

u a

x← 0
b

b

x = 0
a

u

x = 0u

(b) Duplicated version of A1

Fig. 1: A TA and its duplicated version (introduced in Section 5)

provides the action that labels the corresponding1

discrete transition in the TA.2

Given a state s = (`, µ), and d ∈ R≥0, we write3

s+d to denote (`, µ+d). Given two regions r and4

r′, we write r ∪ r′ for {s | s ∈ r or s ∈ r′}.5

Definition 4 (Labelled Region Automaton). For6

a given TA A, the labelled region automaton RA7

is given by the tuple (RA,ΣR, δR) where:8

1. RA is the set of states,9

2. ΣR = {0, 0+, 1} × (Σ ∪ {ε}),10

3. given two regions r, r′ ∈ RA and ζ ∈ ΣR, we11

have (r, ζ, r′) ∈ δR if there exist s = (`, µ) ∈ r12

and s′ = (`′, µ′) ∈ r′ such that one of the13

following holds:14

(a) ζ = (0, a) and (`, µ) e7→ (`′, µ′) ∈ δ in15

TTSA with e = (`, g, a, R, `′) for some g16

and R;17

(b) ζ = (0+, ε) and ∃d ∈ R>0 such that18

(i) s d7→ s′,19

(ii) ∀0 < d′ < d, s+ d′ ∈ r ∪ r′ and20

(iii) fr (µ(z)) 6= 0 and fr (µ′(z)) 6= 0;121

(c) ζ = (1, ε) and ∃d ∈ R>0 such that22

(i) s d7→ s′,23

(ii) ∀0 < d′ < d, s+ d′ ∈ r ∪ r′, and24

(iii) fr (µ′(z)) = 0 iff fr (µ(z)) 6= 0.25

1Condition (ii) ensures that we only move from one region
to the “next” one (no intermediate region), and condition (iii)
adds that we stay in the same region for z (changing the region
for z is handled in item (c)).

� 26

We write r ζ−→R r
′ for (r, ζ, r′) ∈ δR. 27

In the remainder, we will refer to labelled 28

region automata as region automata to alleviate 29

notation. 30

2.3 Execution-time opacity of a TA 31

Let us now recall from [ALL+23] the notions of 32

private and public runs. 33

Durations 34

Given a TA A and a run ρ, we say that `priv is 35

visited on the way to a final location in ρ when ρ is 36

of the form (`0, µ0), (d0, e0), (`1, µ1), . . . , (`m, µm), 37

(dm, em), . . . , (`n, µn) for somem,n ∈ N such that 38

`m = `priv and `n ∈ F . We denote by Visitpriv(A) 39

the set of those runs, and refer to them as private 40

runs. We denote by DVisitpriv(A) the set of all 41

the durations of these runs. 42

Conversely, we say that `priv is avoided on the 43

way to a final location in ρ when ρ is of the form 44

(`0, µ0), (d0, e0), (`1, µ1), . . . , (`n, µn) with `n ∈ F 45

and ∀0 ≤ i < n, `i 6= `priv. We denote the set 46

of those runs by Visitpub(A), referring to them as 47

public runs, and by DVisitpub(A) the set of all the 48

durations of these public runs. 49

These concepts can be seen as the set of exe- 50

cution times from the initial location `0 to a 51

6



final location while visiting (resp. not visiting) the1

private location `priv.2

Example 2. Consider the following two runs of
the TA A1 in Fig. 1a. Note that we use (`0, ·) as
a shortcut for (`0, µ) such that µ(x) = ·.

ρ1 = (`0, 0), (1, e3), (`0, 0), (0, e1), (`priv, 0), (0, e2),
(`f , 0)

ρ2 = (`0, 0), (0.1, e6), (`2, 0), (0, e7), (`3, 0),
(0.8, e8), (`f , 0.8)

Run ρ1 ∈ Visitpriv(A1) is a private run, and3

dur(ρ1) = 1 ∈ DVisitpriv(A1). Run ρ2 ∈4

Visitpub(A1) is a public run with dur(ρ2) = 0.9 ∈5

DVisitpub(A1). �6

Definition 5 (Full ET-opacity). A TA A is fully7

ET-opaque when DVisitpriv(A) = DVisitpub(A).8

�9

That is, if for any run of duration d reach-10

ing a final location after visiting `priv, there exists11

another run of the same duration reaching a final12

location but not visiting `priv, and vice versa, then13

the TA is fully ET-opaque.14

Example 3. Consider again A1 in Fig. 1a. Each15

time x equals 1, we can reset it via e3, and take16

the edges e1 and e2 instantaneously. It results that17

DVisitpriv(A1) = N. We have seen in Example 218

that 0.9 ∈ DVisitpub(A1). So DVisitpriv(A1) 6=19

DVisitpub(A1) and A1 is not fully ET-opaque. �20

3 Problem: Controlling TA to21

achieve ET-opacity22

Let us formally define the main problem addressed23

in this work. We assume Σ = Σc ] Σu where24

Σc (resp. Σu) denotes controllable (resp. uncon-25

trollable) actions. The uncontrollable actions are26

always available, whereas the controllable actions27

can be enabled and disabled at runtime.28

The controller has a strategy, i.e., a function σ :29

R≥0 → 2Σc which associates to each time a subset30

of Σc, denoting that these actions are enabled,31

while other controllable actions are disabled.32

We define the semantics of a controlled TA as33

follows. Compared to Definition 2, we also add to34

the states the absolute time.35

Definition 6 (Semantics of a controlled TA).36

Given a TA A = (Σ, L, `0, `priv, F,X, I, E) and37

a strategy σ : R≥0 → 2Σc , the semantics of38

`0

`priv

`f

x ≤ 1

e1
x = 1

u
x← 0

e 2

x
= 0

u

a
e4

e3
x = 0u

Fig. 2: TA Aopaque

the TA A controlled by strategy σ is given by 39

(S, s0,Σ ∪ R≥0, δ
σ) with 40

1. S =
{

(`, µ, t) ∈ L× RH≥0 × R≥0 | µ |= I(`)
}
, 41

2. s0 = (`0,~0, 0), 42

3. δσ consists of the discrete and (continuous) 43

delay transition relation: 44

(a) discrete transitions: (`, µ, t) e7→σ 45

(`′, µ′, t), if (`, µ, t), (`′, µ′, t) ∈ S and 46

there exists e = (`, g, a, R, `′) ∈ E such 47

that µ′ = [µ]R, µ |= g, and a ∈ σ(τ)∪Σu 48

(that is, a is either enabled by the 49

strategy at time τ , or uncontrollable); 50

(b) delay transitions: (`, µ, t) d7→σ (`, µ+d, t+ 51

d), with d ∈ R≥0, if ∀d′ ∈ R>0 such that 52

d′ < d, (`, µ+ d′, t+ d′) ∈ S. 53

� 54

We write (`, µ, t) d,e−−→σ (`′, µ′, t′) for a combi- 55

nation of a delay and a discrete transitions when 56

∃µ′′ such that (`, µ, t) d7→σ (`, µ′′, t′) e7→σ (`′, µ′, t′). 57

A run ρ = (`0, µ0), (d0, e0), . . . , (`n, µn) is 58

σ-compatible when, ∀0 ≤ i < n, it holds that 59

(`i, µi,
∑
j<i dj)

di,ei−−−→σ (`i+1, µi+1,
∑
j≤i dj). 60

We let Visitpriv
σ (A) the set of private and 61

σ-compatible runs, Visitpub
σ (A) the set of public 62

and σ-compatible runs, DVisitpriv
σ (A) the set of 63

durations of private and σ-compatible runs, and 64

DVisitpub
σ (A) the set of durations of public and 65

σ-compatible runs. 66

Definition 7 (Full ET-opacity with strategy). 67

Given a strategy σ, a TA A is fully ET-opaque 68

with σ whenever DVisitpriv
σ (A) = DVisitpub

σ (A). 69

� 70

Example 4 (ET-opaque TA). Consider the 71

TA Aopaque in Fig. 2. Assume Σu = {u} and 72

Σc = {a}. First consider the strategy σ1 such that 73

∀τ ∈ R≥0, σ1(τ) = {a}, i.e., a is allowed anytime. 74

We have DVisitpriv
σ1

(A) = N while DVisitpub
σ1

(A) = 75

7



R≥0. Therefore DVisitpriv
σ1

(A) 6= DVisitpub
σ1

(A),1

and hence Aopaque is not fully ET-opaque with σ1.2

Now consider the strategy σ2 such that

σ2(τ) =
{
{a} if τ ∈ N
∅ otherwise.

We now have DVisitpriv
σ2

(A) = DVisitpub
σ2

(A) =3

N, hence Aopaque is fully ET-opaque with σ2. �4

Example 5 (Non-ET-opaque TA). There is no5

strategy such that TA A1 in Fig. 1a is fully ET-6

opaque. Recall that Σu = {u} and Σc = {a, b}.7

The transitions e1 and e2 are uncontrollable, so8

we can reach `f at any integer time along a run9

visiting `priv. However the set of public durations10

will either not contain 0, or contain R≥0. Indeed,11

in order to reach `f with a public run, the system12

must take transitions associated to both actions a13

and b. As a consequence, to contain the duration 0,14

the strategy must allow {a, b} at time 0. Hence,15

`3 can be reached at time 0, and as the next tran-16

sition e8 is uncontrollable, it can be taken at any17

time. Thus, the set of public durations is R≥0. �18

Finitely-varying strategies19

In the following, to match the fact that a meta-20

strategy has a finite number of strategy changes21

between two integer time instants, we only con-22

sider strategies that behave in a “reasonable” way.23

We thus only consider finitely-varying strategies,24

in which the number of changes are finite for any25

closed time interval.26

Indeed, we can assume that a controller can-27

not change infinitely frequently its strategy in28

a finite time: it is unrealistic to consider, in a29

bounded interval, neither a system that can per-30

form an infinite number of actions, nor a controller31

that can make an infinite number of choices.32

Finitely-varying strategies are reminiscent of non-33

Zeno behaviours, in the sense that finitely-varying34

strategies have a finite number of strategy changes35

in every bounded interval.36

Formally:37

Definition 8 (Finitely-varying strategy). A38

strategy σ is finitely-varying whenever, for any39

closed time interval I, there is a finite partition40

ι1, . . . , ιn of I such that each ιi is an interval41

within which σ makes the same choice. That is,42

for all τ1, τ2 ∈ ιi, 1 ≤ i ≤ n, σ(τ1) = σ(τ2). �43

x ∈ Q≥0

x /∈ Q≥0

`0

`priv `1

`f

`2 `3

x, y ≤ 1

a
e1

x
>

0

e2

b e3x
< 1u

e5
ay ←
0

e6
y = 0

b

e7

x
= 1

u

e4
0 < x < 1

u

Fig. 3: Automaton Anfv

Example 6 (Non-finitely-varying strategy). Let
Anfv be the automaton in Fig. 3, with a global
invariant x, y ≤ 1. Let Σu = {u} and Σc = {a, b}.
Since transition e4 is uncontrollable, for any strat-
egy σ, (0, 1) ⊆ DVisitpub

σ (A). To ensure a fully
ET-opaque system, all those durations need to
be also enabled through the private state. This
implies that, for every α < 1, both a and b should
be enabled at a time instant before α. Now if we
consider the bottom path, if a and b are enabled
simultaneously, then state `3 is reachable and it is
possible to reach the final state when x = 1. Then
we need to prevent b to be enabled at the same
time as a. We can build a strategy σ to make Anfv
fully ET-opaque with σ. This strategy (illustrated
in red boxes in Fig. 3) is defined by

σ(τ) =
{
{a} if τ ∈ Q≥0
{b} if τ /∈ Q≥0

With strategy σ, it means that the order 44

in which actions a and b can be performed is 45

not fixed, while preventing them from being per- 46

formed at the same time. This is only possible 47

with a non-finitely-varying strategy, where the 48

number of changes is infinite in a given interval. 49

� 50

Meta-strategies 51

As defined previously, strategies have infinite pre- 52

cision in determining when to activate or deac- 53

tivate controllable actions. While it might seem 54

reasonable to assume precise knowledge of when a 55

clock tick occurs, in practice, achieving such infi- 56

nite precision between integer time points is not 57

8



feasible. Therefore, the idea is to group together1

all strategies that enable the same actions at2

exact integer times and permit subsets of these3

actions—maintaining the same order—between4

those times.5

Definition 9 (Meta-strategy). Ameta-strategy φ6

is a partial function on integer bounded intervals,7

such that:8

• for all n ∈ N, φ([n, n]) ∈ 2Σc ,9

• for all n ∈ N, φ((n, n+ 1)) ∈ (2Σc)∗10

�11

In other words, a meta-strategy is a function12

which associates to each integer time a set ν ∈13

2Σc of enabled actions, and to each open interval14

between two consecutive integers a finite sequence15

(ν1, . . . , νm) ∈ (2Σc)∗ giving the order in which16

sets of actions are allowed in the system.17

Definition 10 (Ordered partition). Given an18

interval I, we call ordered partition of I a finite19

sequence of disjoint intervals ι1, . . . , ιn such that:20

1.
⋃n
j=1 ιj = I,21

2. ι1 is left open, ιn is right open,22

3. each ιj is non empty, and23

4. for all j ∈ {1, . . . , n− 1}, the right boundary24

of ιj is the left boundary of ιj+1.25

�26

Example 7. The sequence (0, 0.2], (0.2, 0.42),27

[0.42, 0.42], (0.42, 0.83], (0.83, 1) is an ordered par-28

tition of the interval I = (0, 1). �29

Definition 11 (Meta-strategy satisfaction). A30

strategy σ is said to satisfy a meta-strategy φ,31

denoted σ |= φ, when:32

• for all n ∈ N, σ(n) = φ([n, n]),33

• for all n ∈ N, denoting I = (n, n + 1) and34

φ(I) = ν1, . . . , νm there is an ordered parti-35

tion ι1, . . . , ιm of I such that for all τ ∈ ιi,36

1 ≤ i ≤ m, σ(τ) = νi.37

�38

The set of private (or public) durations for39

a meta-strategy is defined as the union of pri-40

vate (or public) durations of all the strategies41

it represents: DVisitpriv
φ (A) = {τ | ∃σ s.t. σ |=42

φ and τ ∈ DVisitpriv
σ (A)} and DVisitpub

φ (A) =43

{τ | ∃σ s.t. σ |= φ and τ ∈ DVisitpub
σ (A)}.44

Definition 12 (Full ET-opacity with a45

meta-strategy). Given a meta-strategy φ, a46

TA A is fully ET-opaque with φ whenever47

DVisitpriv
φ (A) = DVisitpub

φ (A). �48

Definitions 8 and 9 immediately give a corre- 49

spondence between finitely-varying strategies and 50

meta-strategies: 51

Lemma 1. For any finitely-varying strategy σ, 52

there exists a unique meta-strategy φ such that 53

σ |= φ. 54

For any meta-strategy φ, there exists a 55

(finitely-varying) strategy σ such that σ |= φ. 56

Problems 57

In this paper, we are interested in several 58

ET-opacity control problems, i.e., related to a 59

(meta-)strategy making the corresponding con- 60

trolled TA A ET-opaque. 61

The first problem we are interested in will 62

be the existence of a strategy enforcing the ET- 63

opacity. 64

Full ET-opacity strategy emptiness prob-
lem:
Input: A TA A
Problem: Decide the emptiness of the set of
strategies σ such that A is fully ET-opaque
with σ.

65

Because we will show that this problem is 66

undecidable (Theorem 1), even when restricted to 67

finitely-varying strategies, we define a variant of 68

the setting, and consider the existence of meta- 69

strategies instead. We will consider both the exis- 70

tence of a meta-strategy enforcing the ET-opacity, 71

or the synthesis of such a meta-strategy. 72

Full ET-opacity meta-strategy emptiness
problem:
Input: A TA A
Problem: Decide the emptiness of the set of
meta-strategies φ such that A is fully ET-
opaque with φ.

73

Full ET-opacity meta-strategy synthesis
problem:
Input: A TA A
Problem: Synthesize a meta-strategy φ such
that A is fully ET-opaque with φ.

74

9



4 Undecidability of the full1

ET-opacity strategy2

emptiness problem3

In this section, we show that the full ET-opacity4

strategy emptiness problem is undecidable, vindi-5

cating the reliance on meta-strategies. To do so,6

we will use a reduction from the termination of7

the two-counter Minsky machine problem—which8

is known to be undecidable [Min67].9

Let us start with a quick recall of Minsky10

machines. A two-counter Minsky machine M is11

described by two counters C1 and C2, as well as a12

sequence of commands c0, . . . , cm where c0 is the13

starting command, cm ends the run of the system,14

and every command c0 to cm−1 is of one of the15

following three types:16

• increment counter C ∈ {C1, C2}, move to the17

next command18

• decrement counter C ∈ {C1, C2}, move to the19

next command (note that the machine must20

be designed so that this command cannot21

occur when counter C is equal to 0)22

• if counter C ∈ {C1, C2} is equal to 0, move to23

command ck, otherwise move to command cj .24

In summary, the machine goes through a list of25

commands starting with c0, incrementing, decre-26

menting counters, or testing whether a counter27

is equal to 0 in order to select the new com-28

mand to jump to—and it terminates whenever29

it reaches cm. The termination problem for two-30

counter Minsky machines consists in deciding,31

given a machineM, whetherM terminates.32

Theorem 1. The full ET-opacity strategy empti-33

ness problem is undecidable.34

Proof. Let M be a Minsky machine over two35

counters C1 and C2, described by the commands36

c0, . . . , cm. We will build a TA A such that there37

exists a strategy σ enforcing full ET-opacity of A38

iffM does not terminate.39

Overall intuition of the encoding40

Intuitively, in order to be opaque, the TA A41

coupled with a strategy σ will have to correctly42

emulate the behaviour of the Minsky machine,43

with the strategy’s choices depending on the val-44

ues of the counters. More precisely, each command45

of M will take exactly three time units to be46

handled by A, and therefore the i-th step of the47

machine corresponds to the interval (3i, 3i + 3]. 48

Considering this interval modulo 3, (0, 1] is ded- 49

icated to actions associated to counter C1, (1, 2] 50

is dedicated to actions associated to counter C2, 51

and (2, 3] is used to detect whether the strategy 52

makes the system fully ET-opaque; in particular, 53

we have that no private run can reach the target 54

within this period of time. Due to the periodic 55

nature of the system, the intervals (0, 1], (1, 2] and 56

(2, 3] should be understood modulo 3. 57

Let us give an idea of how counter C1 is rep- 58

resented within the first interval. More detailed 59

explanation as well as the corresponding A used 60

are given later in this section. In our model, when- 61

ever C1 has the value k, then k public runs will 62

reach the final location at different times dur- 63

ing this interval. In order to ensure opacity, the 64

strategy needs to allow the action aC1 at those k 65

instants, as this action produces a private run that 66

immediately reaches the final state. However it 67

also produces a public run that will reach the final 68

state three time units later. Hence, the number of 69

public runs reaching the final location during the 70

next (0, 1] interval remains the same (ignoring the 71

potential impact of other actions), thus preserving 72

the value of the counter as well. 73

Incrementing the counter can then be done 74

by forcing an action which will add a new public 75

duration three times unit later, while decrement- 76

ing the counter is done by producing a private run 77

immediately reaching the target, and thus remov- 78

ing the need for one aC1 . The test command can 79

be ensured by first requiring, at time 0, the con- 80

troller to claim (allowing either the action =0 or 81

6=0 ) whether counter C1 is zero or not. Then, by 82

observing whether action aC1 occurs or not within 83

the following interval. 84

The actions on counter C2 are the same, only 85

occurring within the intervals (1, 2] and thus will 86

not be detailed fully in the proof. 87

Finally, if a violation is made (for instance by 88

claiming the counter is zero when it is not, or 89

by refusing to play an action linked to an incre- 90

ment or decrement of a counter), a location can 91

be reached from which one can go to the final 92

location at any time. This means that any dura- 93

tion beyond this point corresponds to a public 94

run. This violates opacity as, as mentioned ear- 95

lier, no private run will be able to reach the final 96

location within the intervals (2, 3]. Reaching the 97

10



final command cm will similarly trigger a viola-1

tion of opacity, hence the only way for a strategy2

to ensure opacity is to properly emulate the Min-3

sky machine but fail to reach cm, and thus for the4

Minsky machine not to terminate.5

Gadgets and actions6

Our TA will be built by combining several smaller7

timed automata fragments called “gadgets”. We8

first describe the construction gadget per gadget,9

and then explain how they should be combined.10

As the strategy’s choice is based only on time11

elapsed, it does not know in which gadget the run12

is, and thus must assume it might be in any of13

them, ensuring opacity in all cases.14

For all the gadgets, we fix a set of actions Σ =15

{u, aC1 , aC2 , incC1 , incC2 , decC1 , decC2 ,=0 , 6=0}16

with u being the only uncontrollable action. The17

TA A, and a fortiori the different gadgets, will18

rely on a single clock x. In particular, we do not19

rely on the extra “tick” clock z that is assumed20

throughout the rest of this document.21

Gadget 1act22

We first describe a gadget preventing the con-23

troller from allowing two actions simultaneously.24

Formally, the gadget 1act is the TA (see Fig. 4)25

A1act = (Σ, L1act , `
1act
0 , `priv, `f , {x}, I1act , E1act)26

where:27

• L1act = {`1act
0 , `e, `f} ∪ {`v | v ∈ Σ},28

• I1act(`) = true for all ` ∈ L1act ,29

• E1act =
{

(`1act
0 , true, v, {x}, `v) | v ∈ Σ

}
∪30 {

(`v, x = 0, v′, ∅, `e) | v, v′ ∈ Σ, v 6= v′
}
∪31 {

(`e, true, u, ∅, `f
}
.32

In the 1act gadget, whenever an action v is33

allowed, the system can go to a location `v via34

e1, resetting x; then, if any action other than v is35

also allowed at the same time (which is tested by36

requesting x = 0 in edge e2), then the following37

location `e can be reached. From `e the system can38

reach the final location at any time via e3 via the39

uncontrollable action u, whatever the controller40

does. As a consequence, every duration beyond41

this point corresponds to a public run. As pre-42

viously mentioned, some durations (the intervals43

(2, 3]) cannot be achieved by private runs, and44

therefore opacity is violated.45

`1act
0 `v `e `f

e1
x← 0

v

e2
x = 0
v′ 6= v

e3
u

Fig. 4: 1act gadget on a generic action v

Gadgets GC1 and GC2 46

We now introduce the gadget GC1 (resp. GC2) 47

which forces, barring intervention by other gad- 48

gets, the strategy to repeat the same behaviour 49

within the intervals (0, 1) (resp. (1, 2)). Formally, 50

the gadget GC1 is the TA (see Fig. 5a) AGC1
= 51

(Σ, LGC1
, `
GC1
0 , `priv, `f , {x}, IGC1

, EGC1
) where: 52

• LGC1
= {`GC1

0 , `C1 , `priv, `f}, 53

• IGC1
(`) = true for all ` ∈ LGC1

, 54

• EGC1
=
{

(`GC1
0 , x = 3, u, {x}, `GC1

0 ), 55

(`GC1
0 , 0 < x < 1, aC1 , {x}, `C1), 56

(`C1 , x = 0, u, ∅, `priv), (`priv, x = 0, u, ∅, `f ), 57

(`C1 , x = 3, u, ∅, `f )
}
. 58

Gadget GC2 only differs by one transition 59

(see Fig. 5b), moving the impact of allowing the 60

action aC2 to the interval (1, 2). Note that, since 61

the intervals in which aC1 and aC2 have an effect 62

are disjoint, we could use a single action for 63

both. We keep two for ease of understanding. In 64

the following, we will not present the variations 65

associated to counter C2. 66

Assume that public runs are expected to reach 67

the target at times τ1, . . . , τk within the inter- 68

val (0, 1) of this step. Ignoring future gadgets, 69

thanks to GC1 , the strategy can preserve opacity 70

by allowing aC1 exactly at times τ1, . . . , τk. This 71

immediately produce a private run (going via e2 72

then e3). However, it also produces a public run 73

that will reach the final location 3 time units later 74

(via e4), hence forcing the strategy to redo the 75

same choices during the next step. 76

As the number of times aC1 is allowed dur- 77

ing one step of the process represents the value 78

of counter C1, barring external intervention, GC1 79

allows to maintain the value of the counter within 80

the strategy. 81

Increment gadget 82

We now show how external interventions modify 83

the number of times the strategy must repeat aC1 84

within the interval (0, 1). We start with the gad- 85

get corresponding to a command incrementing 86

11



`
GC1
0

`C1

`priv

`f

e1, u
x = 3
x← 0

e2, aC1

0 < x < 1
x← 0

e3 , u
x = 0

e4, u
x = 3

e5,
u

x = 0

(a) Gadget GC1

`
GC2
0

`C2

`priv

`f

e1, u
x = 3
x← 0

e2, aC2

1 < x < 2
x← 0

e3 , u
x = 0

e4, u
x = 3

e5,
u

x = 0

(b) Gadget GC2

Fig. 5: Gadgets GC1 and GC2

counter C1. More precisely, if command ci is incre-1

menting C1, we build the TA (see Fig. 6a) Ai =2

(Σ, Li, `i0, `priv, `f , {x}, Ii, Ei) where:3

• Li = {`i0, `i1, `i2, `i3, `i+1
0 , `priv, `f},4

• Ii(`) = true for all ` ∈ Li,5

• Ei =
{

(`i0, x = 3, u, {x}, `i+1
0 ), (`i0, 0 < x < 1,6

incC1 , ∅, `i1), (`i0, 0 < x < 1, incC1 , {x}, `i2),7

(`i0, x = 1, u, ∅, `f ), (`i1, x = 1, u, {x}, `priv),8

(`priv, x = 0, u, ∅, `f ), (`i2, x = 3, u, ∅, `f ),9

(`i2, 0 < x < 1, incC1 , ∅, `i3), (`i3, true, u, ∅, `f )
}
.10

In this gadget, because of edge e7, a public11

run will reach the final location at time 1. The12

only way to make this time opaque is via edges13

e2, e3 and e4 (which creates a private run of14

the same duration). This requires allowing action15

incC1 somewhen in (0, 1). Because of edge e1 how-16

ever, this additionally creates a public run that17

will reach the final location 3 time units later and18

will have to be made opaque thanks to GC1 . At19

time 3, a run can then go to the initial state of20

command ci+1 via edge e6, and thus start the next21

TA fragment.22

As a consequence, assuming that σ allows aC123

k times during the interval (0, 1) of this process,24

(say, at times τ1, . . . , τk), then (with the exception25

of the case where ci+1 is a decrement command),26

σ will allow aC1 k + 1 times during the interval27

(0, 1) of the next process. Indeed, let τk+1 be the28

time where σ allowed incC1 . First note that for all29

i ≤ k, τi 6= τk+1 because of gadget 1act forbidding30

several actions to be allowed at the same time.31

Hence, there are k + 1 different times at which a32

public run will reach the final location during the33

next interval (0, 1), and (ignoring the decrement34

gadget) only allowing action aC1 at those times 35

protects opacity. 36

Finally, in order to avoid violating opacity, σ 37

must not allow incx more than once. Indeed, if 38

incx is allowed at two different times τ1 and τ2 39

during (0, 1), then a run could take e1 at time τ1 40

then e8 at time τ2. And once `i3 is reached, the 41

final location can be reached at any point by a 42

public run, violating opacity. 43

Decrement gadget 44

We now move to the decrement command, which 45

is encoded similarly to the increment command. 46

The only difference is that from `i2, instead of 47

going to `f when x = 3, there is an uncon- 48

trollable transition going immediately (x = 0) 49

to `priv. Formally, if command ci is decrement- 50

ing C1, we build the TA (see Fig. 6b) Ai = 51

(Σ, Li, `i0, `priv, `f , {x}, Ii, Ei) where: 52

• Li = {`i0, `i1, `i2, `i3, `i+1
0 , `priv, `f}, 53

• Ii(`) = true for all ` ∈ Li, 54

• Ei =
{

(`i0, x = 3, u, {x}, `i+1
0 ), 55

(`i0, 0 < x < 1, decC1 , ∅, `i1), 56

(`i0, 0 < x < 1, decC1 , {x}, `i2), 57

(`i0, x = 1, u, ∅, `f ), (`i1, x = 1, u, {x}, `priv), 58

(`priv, x = 0, u, ∅, `f ), (`i2, x = 0, u, ∅, `priv), 59

(`i2, 0 < x < 1, decC1 , ∅, `i3), 60

(`i3, true, u, ∅, `f )
}
. 61

As for the increment gadget, in order to pre- 62

serve opacity, σ must allow decC1 exactly once 63

during the interval. Moreover, as it immediately 64

produces a private run, it should be played at a 65

time where a public run is supposed to reach the 66

destination. Therefore, if τ1, . . . , τk are the times 67

12



`i0

`i1

`i2 `i3

`i+1
0

`priv

`f

e6, u
x = 3
x← 0 e1, incC1

0 < x < 1
x← 0

e2, incC1

0 < x < 1 e7 , u
x = 1

e3 , ux = 1x←
0

e 4,
u

x
= 0

e5, u
x = 3

e8, incC1

0 < x < 1

e9,
u

(a) Gadget incC1

`i0

`i1

`i2 `i3

`i+1
0

`priv

`f

e6, u
x = 3
x← 0 e1, decC1

0 < x < 1
x← 0

e2, decC1

0 < x < 1 e7 , u
x = 1

e3 , ux = 1x←
0

e 4,
u

x
= 0 e5, u

x = 0

e8, decC1

0 < x < 1

e9,
u

(b) Gadget decC1

Fig. 6: Increment and decrement gadgets

at which public runs are supposed to reach the1

final location within this (0, 1) interval, then decC12

must be allowed at one of them (say τ1), and aC13

must be allowed at the k−1 others. Hence produc-4

ing k− 1 new public runs that will reach the final5

locations at the times τ2, . . . , τk of the next pro-6

cess. Hence, effectively decrementing by one the7

number of times aC1 must be allowed on the next8

step.9

Zero-test gadget10

We now move to the case where the command ci11

is a zero-test. In this construction (see Fig. 7), the12

strategy must initially indicate whether it claims13

the counter is zero or not. Then, following this14

claim, we just need to check whether the action15

aC1 is allowed at some point within the interval16

(0, 1) or not.17

More precisely, assuming the test is of the form18

“if C1 = 0 go to ck otherwise go to cj”, we build19

the TA Ai = (Σ, Li, `i0, `priv, `f , {x}, Ii, Ei) where:20

• Li = {`i0, `
j
0, `

k
0 , `

i
=, `

i
=,2, `

i
6=, `

i
6=,2, `priv, `f},21

• Ii(`) = true for all ` ∈ Li,22

• Ei =
{

(`i0, x = 0,=0 , ∅, `i=),23

(`i0, x = 0, 6=0 , ∅, `i6=), (`i0, x = 1, u, ∅, `f ),24

(`i=, x = 3, u, {x}, `k0),25

(`i=, x = 1, u, {x}, `priv),26

(`i=, 0 < x < 1, aC1 , ∅, `i=,2),27

(`priv, x = 0, u, ∅, `f ), (`i=,2, true, u, ∅, `f ),28

(`i6=, x = 3, u, {x}, `j0),29

(`i6=, 0 < x < 1, aC1 , ∅, `i6=,2),30

(`i6=,2, x = 1, u, {x}, `f )
}
.31

`i0

`i=`k0

`i=,2

`priv

`i6=`j0 `i6=,2 `priv

`f

e1,=0
x = 0

e2, 6=0
x = 0

x = 1
e3, u

x← 0

e4, u
x = 3

x← 0

e5, u
x = 1

e6, aC1

0 < x < 1

x
=

0e 7,
u

e8,
u

x← 0

u, e9
x = 3

0 < x < 1
e10, aC1

x← 0

e11, u
x = 1

e12, u
x = 0

Fig. 7: Gadget if C1 (the location `priv is dupli-
cated to avoid crossing transitions).

Let us explain this gadget. When entering it, 32

due to e3, a public run will reach the final loca- 33

tion at time 1. To avoid this, the strategy has 34

two options. When x = 0 it can either claim 35

counter C1 is equal to 0, and allow the action =0 , 36

hence letting a run take e1, or claim it is not equal 37

to 0, allowing 6=0 , hence letting a run take e2. 38

Let us first consider the case where σ 39

allowed 6=0 . Then, in order to produce a private 40

run at time 1, the strategy must allow aC1 in the 41

interval (0, 1), letting a run take e10 and then e12, 42

which means the counter is not equal to 0, and 43

thus that the claim was correct. Then, at time 3, 44

13



a run will reach `j0 and continue the process with1

command cj .2

If the strategy allowed =0 , then a private run3

will be produced via edges e5 and e7, making4

time 1 opaque. Moreover, if aC1 is allowed at5

some point within the interval (0, 1) (meaning the6

counter is not 0 and thus that the claim was false),7

then e6 can be taken, ensuring that every dura-8

tion from that point can be accessed by a public9

run, and thus violating opacity. Then, at time 3,10

a run will reach `k0 and continue the process with11

command ck.12

Hence, the only way for the strategy to avoid13

violating opacity during this process is to cor-14

rectly select whether the counter is empty or not15

(and thus to allow the right action) when x = 0.16

This ensures the system continues with the correct17

command (cj or ck).18

Termination gadget19

Termination is achieved when cm is reached. In20

our case, we wish that termination violates opac-21

ity. Hence the command cm is represented by a22

simple TA Am where, from the initial location `m0 ,23

one can go to the final location at any time with-24

out control, i.e., via an edge labelled with u.25

Hence, every duration from this point becomes26

associated to a public run, violating opacity.27

Conclusion of the proof28

We build the TA A by combining the gadgets29

for every command ci, as well as the gadgets30

GC1 , GC2 and 1act (noting that the final and31

private location of each gadget can be merged),32

and with an additional initial location `0 from33

which one can reach in 0-time the locations34

`
GC1
0 , `

GC2
0 , `1act

0 and `00 in a non-deterministic35

manner via uncontrollable transitions.36

We have that there exists a strategy σ enforc-37

ing full ET-opacity of A iffM does not terminate.38

Indeed, assume that M does not terminate.39

As explained throughout the gadgets, by building40

a strategy emulating the Minsky machine (mak-41

ing the adequate claim on a zero-test, and for42

instance allowing aC1 at times 1
2n for all n smaller43

or equal to the value of counter C1, and similarly44

for counter C2), then opacity is ensured. Con-45

versely, ifM terminates, either the strategy does46

not emulate correctly the Minsky machine and47

thus violates opacity as previously discussed, or it48

reaches the gadget associated to cm—which again 49

leads to a violation of opacity. 50

This proves that the full ET-opacity problem 51

is undecidable. � 52

Remark 1. Note that the construction relies on 53

a single clock, hence the problem is undecidable 54

even when restricting to one-clock TAs. � 55

Remark 2. This proof applies whether the strat- 56

egy is assumed finitely-varying or not. Thus the 57

finitely-varying assumption would not help in 58

regaining decidability. � 59

5 The belief automaton 60

In this section, we build an automaton called the 61

belief automaton, that will allow us to determine 62

in which regions the system can be after a given 63

execution time. This automaton considers a dupli- 64

cated TA instead of the original TA in order to 65

distinguish the final state reached by a private or 66

a public run.2 67

5.1 Separating private and public 68

runs 69

We define a duplicated version of a TA A, 70

denoted by Adup, making it possible to decide 71

whether a given run avoided `priv, by just look- 72

ing at the final reached location. The dupli- 73

cated version Adup is such that any run of A 74

has an equivalent one in Adup where each loca- 75

tion is replaced by its duplicated version if 76

a previously visited location is `priv. In par- 77

ticular, DVisitpub(A) = DVisitpub(Adup) and 78

DVisitpriv(A) = DVisitpriv(Adup). 79

Definition 13 (Duplicated TA). Let 80

A = (Σ, L, `0, `priv, F,X, I, E) be a TA. 81

The associated duplicated TA is Adup = 82

(Σ, L′, `0, `priv, F
′,X, I ′, E′) where: 83

1. L′ = Lpub ] Lpriv with Lpub = L \ `priv and 84

Lpriv = {`p | ` ∈ L} ∪ {`priv}, 85

2. F ′ = {`pf | `f ∈ F} ∪ F , 86

3. I ′ is the invariant such that ∀` ∈ L, I ′(`) = 87

I ′(`p) = I(`), and 88

4. E′ =
{

(`1, g, a, R, `2) | (`1, g, a, R, `2) ∈ 89

E and `1 6= `priv
}
∪
{

(`p1, g, a, R, `
p
2) | 90

(`1, g, a, R, `2) ∈ E
}
∪
{

(`priv, g, a, R, `
p) | 91

(`priv, g, a, R, `) ∈ E
}
. 92

2This could equally have been encoded using a Boolean vari-
able remembering whether `priv was visited, as in [ALMS22].

14



�1

That is, edges in Adup are made of the orig-2

inal edges of A except these originating from3

the private location `priv, plus a copy of the4

edges between the duplicated locations `pi , plus5

edges from the private location `priv to the dupli-6

cated version of the target locations. In other7

words, once `priv is reached, the TA moves to the8

copy of the original locations, thus remembering9

whether `priv was visited.10

Example 8. Fig. 1b depicts Adup1 , the duplicated11

version of A1 in Fig. 1a. The thick line from `priv12

to `pf depicts the transition from the “normal”13

part of the TA into the “duplicated” part, after14

visiting `priv. Observe in Fig. 1b that each run15

avoiding `priv ends in `f , and that the only out-16

going transition of `priv is modified to go to the17

duplicated `pf . �18

5.2 Beliefs19

A belief 3, denoted by b, represents the set of20

regions in which the attacker believes to be accord-21

ing to their knowledge, i.e., the current absolute22

time and the strategy (that is, the enabled actions23

by the controller over time). For a TA A and a24

meta-strategy φ, we denote by bφt the set of regions25

in which the system can be after a time t while26

following a strategy σ such that σ |= φ in A, i.e.,27

r ∈ bφt iff there exists a strategy σ such that σ |= φ28

and a run ρ in Adup such that ρ is σ-compatible,29

last(ρ) ∈ r, r ∈ RAdup and dur(ρ) = t.30

We regroup those beliefs depending on their31

intervals by defining the set IφA of interval beliefs32

reachable by a meta-strategy φ. Formally, for a33

given meta-strategy φ, IφA = {bφk | k ∈ N}∪{bφk+ |34

k ∈ N} where bφk matches the notation introduced35

above, and bφk+ =
⋃
t∈(k,k+1) b

φ
t .36

Among those beliefs, we will be particularly37

interested in the ones showing leaks of informa-38

tion about the system. Intuitively, a leaking belief39

allows to discriminate private and public runs. For40

a given TA A, we denote PrivateA =
{

[(`, µ)] |41

` ∈ Lpriv, µ ∈ RH≥0
}

the set of regions reach-42

able after visiting `priv on a run in Adup, and43

PublicA =
{

[(`, µ)] | ` ∈ Lpub, µ ∈ RH≥0
}
the set44

of regions reachable on a run not visiting `priv45

in Adup.46

3We follow the vocabulary from, e.g., [BFH+14]. This is also
close to the concept of estimator (e.g., [KKG24]).

Definition 14. Given a TA A, a belief b is said 47

to be leaking for full ET-opacity when exactly one 48

of the following two conditions is satisfied: 49

1. (b ∩ RFA ∩ PrivateA 6= ∅), or 50

2. (b ∩ RFA ∩ PublicA 6= ∅). 51

� 52

This means that finishing in this belief leaks 53

an information to the attacker: only one final state 54

is possible (private or public, but not both). 55

As we will now show, leaking interval beliefs 56

contains the relevant information with respect to 57

full ET-opacity. 58

Lemma 2. Let A be a TA and φ a meta-strategy. 59

A is fully ET-opaque with φ iff there is no interval 60

belief in IφA that is leaking for full ET-opacity. 61

Proof. =⇒ Let A be a TA that is fully ET- 62

opaque with meta-strategy φ. Let b ∈ IφA 63

be an interval belief. Suppose w.l.o.g. that 64

b ∩ RFA ∩ PrivateA 6= ∅. Let r ∈ b ∩ 65

RFA ∩ PrivateA. Then by definition, there is 66

a strategy σ |= φ and a σ-compatible run 67

ρ ∈ Visitpriv
σ (A) such that last(ρ) ∈ r. A 68

being fully ET-opaque with meta-strategy φ, 69

DVisitpriv
φ (A) = DVisitpub

φ (A). Thus, there 70

exists a strategy σ′ |= φ and a σ′-compatible 71

run ρ′ ∈ Visitpub
φ (A) such that dur(ρ′) = 72

dur(ρ). Denoting r′ = [last(ρ′)], since the 73

two runs have the same duration, they end 74

in the same interval belief and we have r′ ∈ 75

b∩RFA∩PublicA. (Note that r′ ∈ RFA as a run 76

ρ belongs to Visitpub(A)∪Visitpriv(A) only if 77

[last(ρ)] ∈ RFA.) Hence, b ∩RFA ∩PublicA 6= ∅. 78

Therefore b is not leaking for full ET-opacity. 79

⇐= Conversely, we now assume that there is 80

no interval belief in IφA that is leaking for 81

full ET-opacity. W.l.o.g, we consider a time 82

τ ∈ DVisitpriv
φ (A). By definition, there exists 83

a strategy σ |= φ and a σ-compatible run 84

ρ ∈ Visitpriv
σ (A) such that dur(ρ) = τ . We 85

want to prove that τ ∈ DVisitpub
φ (A), i.e., 86

that there exists a strategy σ′ |= φ and 87

a σ′-compatible run ρ′ ∈ Visitpub
σ′ (A), such 88

that dur(ρ′) = dur(ρ). 89

If dur(ρ) = k ∈ N, then r = [last(ρ)] is 90

included in the interval belief bφk , and more 91

precisely r ∈ bφk∩RFA∩PrivateA. Since interval 92

beliefs in IφA are not leaking, there also exists 93

a region r′ ∈ bφk ∩RFA∩PublicA. By definition 94

of bφk , there must be a strategy σ′ |= φ and a 95

15



σ′-compatible run ρ′ of duration k such that1

r′ = [last(ρ′)] and thus a public run of the2

same duration as ρ.3

If dur(ρ) ∈ (k, k + 1) with k ∈ N, we4

can use the construction above to prove5

the existence of a strategy σ′′ |= φ and a6

σ′′-compatible run ρ′′ ∈ Visitpub
σ′′ (A) such7

that r′′ = [last(ρ′′)] ∈ bφk+. Problem is, we8

have no guarantee that ρ and ρ′′ have the9

same duration, only that these durations are10

both in (k, k + 1).11

To complete this proof, we will, using σ′′12

and ρ′′, build a strategy σ′ |= φ and a13

σ′-compatible run ρ′ ∈ Visitpub
σ′ (A) that has14

the same duration as ρ. This will be done15

creating a function shrink that will trans-16

form a time instant into another. Strategy17

σ′ will then mimick σ′′ by setting σ′(t) =18

σ′′(shrink(t)). Each transition of ρ′ at time t19

will mimick a similar transition of ρ′′ at time20

shrink(t). And with the additional property21

that shrink(dur(ρ)) = dur(ρ′′s), runs ρ and22

ρ′ will have the same exact duration.23

In order to define shrink, let us consider

q = fr (dur(ρ′′))
fr (dur(ρ)) and q′ = 1− fr (dur(ρ′′))

1− fr (dur(ρ)) .

We now define:

shrink(t) =

 t if q = 1
btc+ fr (t)× q if q < 1
dte − (dte − t)× q′ if q > 1

Note first that, since q < 1 in case 2, we24

have, if t is not an integer, btc < shrink(t) <25

t. Similarly, using the fact that q > 1 ⇐⇒26

q′ < 1, in case 3, if t is not an integer, then27

t < shrink(t) < dte. Function shrink thus28

moves time instants towards the nearest inte-29

ger below (case 2) or above (case 3) while30

preserving the integral part.31

As announced before, shrink(dur(ρ)) =
dur(ρ′′). The first case is straightforward (if
q = 1) and for the second one we just need
to remember that bdur(ρ)c = bdur(ρ′′)c.
For the third case, since we have assumed
that fr (dur(ρ)) 6= 0, we have ddur(ρ)e =
bdur(ρ)c + 1 and ddur(ρ)e − dur(ρ) = 1 −

fr (dur(ρ)). Thus:

shrink(dur(ρ))
=ddur(ρ)e −

(
ddur(ρ)e − dur(ρ)

)
× q′

= (bdur(ρ)c+ 1)−
(
1− fr (dur(ρ))

)
×(

1− fr (dur(ρ′′))
)(

1− fr (dur(ρ))
)

=bdur(ρ)c+ fr (dur(ρ′′))
=dur(ρ′′)

Then we can see that function shrink pre- 32

serves integer values. When t = k ∈ N, both 33

fr (t) and dte − t are 0. Furthermore, func- 34

tion shrink is strictly increasing. The two last 35

properties allow us to build the strategy σ′ 36

such that σ′(t) = σ′′(shrink(t)). Since σ′′ |= 37

φ and since σ′′ and σ′ allow the same actions 38

at integer times, and make the same strat- 39

egy changes in the same order in between, we 40

have σ′ |= φ too. Since our function shrink is 41

continuous, strictly increasing over R≥0 and 42

has R≥0 as its image, it is invertible and 43

the inverse function is defined on R≥0 and 44

satisfies: 45

shrink−1(t) =

 t if q = 1
btc+ fr (t) /q if q < 1
dte − (dte − t)/q′ if q > 1

Using this inverse function, we can 46

now define ρ′ as the run that does 47

the same actions as ρ′′ in the same 48

order, but where the time at which 49

those transitions are made are trans- 50

formed by shrink. Formally if ρ′′ = (`0,~0), 51

(d0, e0), . . . , (dn−1, en−1), (`n, µn) then we 52

define ρ′ = (`0,~0), (d′0, e0), . . . , (d′n−1, en−1), 53

(`n, µ′n) where for every 0 ≤ i < n, d′i = 54

shrink−1
(∑j≤i

j=0 dj

)
− shrink−1

(∑j<i
j=0 dj

)
, 55

and for every 0 < i ≤ n, µ′i = [µ′i−1 + d′i−1]R. 56

We need to prove that ρ′ is actually a run of 57

Adup, i.e., that all transitions and delays can 58

occur. 59

Since ρ′ visits the same locations and does 60

the same discrete transitions as ρ′′, we know 61

that these transitions are possible from those 62

locations. The only thing to prove is that 63

invariants are satisfied for delay transitions, 64

16



and guards are satisfied for discrete tran-1

sitions. In a timed automaton, the guards2

and invariants only compare a clock value to3

an integer constant. We need to show that4

function shrink preserves these comparisons.5

Given a time instant t ∈ R≥0 and
k ∈ N, since t and t + k have the
same fractional part, we have that
shrink−1(t+ k) = shrink−1(t) + k. It is
straightforward for case q = 1, quite simple
for q < 1, and for the last case

dt+ ke −
(
dt+ ke − (t+ k)

)
/q′

=dte+ k −
(
dte+ k − t− k

)
/q′

=dte −
(
dte − t

)
/q′ + k.

Since the function shrink−1 is increas-6

ing, and based on the above equality, we7

have for any integer value k and any two8

time instants t and t′, if t − t′ ./ k9

then shrink−1(t) − shrink−1(t′) ./ k (with10

./ ∈ {<,≤,=,≥, >}). Thus for every transi-11

tion (or invariant) along ρ′′ where a clock x12

is compared to a value k in a guard, if13

we take t′ as the last instant x has been14

reset and t the time instant at which the15

transition is fired (or the invariant checked),16

the guard (or invariant) will also be satis-17

fied at time shrink−1(t) along ρ′. Since this18

is true for every guard of every transition19

(and any invariant) of ρ′′, ρ′ is indeed a20

run of Adup. Since it furthermore visits the21

same states as ρ′′, ρ′ does not visit the pri-22

vate state, and since we applied the same23

transformation to create ρ′ from ρ′′ that24

we did to create strategy σ′ from σ′′, ρ′25

is σ′-compatible and thus in Visitpriv
σ′ (A).26

Adding the fact (proven earlier) that σ′ |= φ,27

we get that dur(ρ′) ∈ DVisitpriv
φ (A), and28

recalling that shrink ensures that ρ′ and ρ29

have the same duration, we get that τ =30

dur(ρ) ∈ DVisitpriv
σ (A) which concludes the31

proof.32

�33

5.3 Belief automaton34

If the set IφA contains the relevant information35

with respect to full ET-opacity, there is no imme-36

diate way to compute and manipulate it. In this37

endeavour, writing E ⊆ Σc for a set of enabled 38

actions we define as follows the belief automaton: 39

Definition 15 (Belief automaton). Given a TAA 40

with Σ = Σc ]Σu, we define the belief automaton 41

as the tuple BA = (SBA ,ABA ,⊥, dBA) where: 42

1. SBA = 2RAdup ∪ {⊥} is the set of states, 43

2. ABA = {0, 0+, 1} × 2Σc is the alphabet, 44

3. ⊥ is the initial state, 45

4. dBA ⊆ (SBA × ABA ×SBA) is such that 46

(a)
(
⊥, (0,E), b

)
∈ dBA iff b is the largest set 47

such that ∀r ∈ b, ∃n ≥ 0, [s0] (0,a1)−−−−→R 48

· · · (0,an)−−−−→R r in RAdup with ∀1 ≤ i ≤ n, 49

ai ∈ (E ∪ Σu), 50

(b)
(
b, (†1,E), b′

)
∈ dBA iff b 6= ⊥, b′ is the 51

largest set such that ∀r′ ∈ b′, ∃r ∈ b, 52

∃n ≥ 1, r (†1,ε)−−−→R · · ·
(†n,an)−−−−−→R r′ in 53

RAdup with ∀1 < i ≤ n, ai ∈ (E∪Σu∪{ε}) 54

and †1 ∈ {0+, 1} and ∀1 < i ≤ n, †i ∈ 55

{0, 0+}. 56

� 57

We first consider transitions from the initial 58

belief ⊥: time cannot elapse here; one can do a 59

sequence of actions in 0-time (condition 4a). Then, 60

from the other beliefs, a transition is made of a 61

sequence of transitions from the region automa- 62

ton. The first one lets time elapse (possibly chang- 63

ing region for z), and all the following actions 64

are either discrete transitions, or delay transitions 65

remaining in the same region for z (condition 4b). 66

Example 9. Because there is a single clock in 67

our subsequent examples, as an abuse of nota- 68

tion, we represent each region within a belief using 69

either an open interval, or a unique integer. We 70

write
(
`, (τ, τ ′)

)
for the region containing the state 71(

`, µ(x1)
)
with µ(x1) ∈ (τ, τ ′), τ ∈ N, τ ′ = +∞ if 72

τ = c1, τ ′ = τ + 1 otherwise. Similarly, we write 73

(`, τ) for the region containing the state
(
`, µ(x1)

)
, 74

µ(x1) = τ ∈ N. 75

Let Aopaque be the TA in Fig. 2. With the 76

global invariant x ≤ 1, we have the following 77

beliefs. Here, the value of clock z is not given as, 78

in this example, it is equivalent to the value of x. 79

The corresponding belief automaton is 80

depicted in Fig. 8. 81

17



⊥

b0

b′0

b(0,1)

b′(0,1)

b1 b′1

0, ∅

0, {a}

1, {a}

1, ∅

1,
{a
}

1, ∅

1, {a}
1, ∅

0+
, ∅

1, {a}

1, ∅

1, {
a} 1, ∅

0
+
, {
a}

1, {a}

1, ∅

0+, {a}

0+, ∅

Fig. 8: Belief automaton BAopaque

b′0 =
{

(`0, 0), (`priv, 0), (`pf , 0)
}

b0 = b′0 ∪
{

(`f , 0)
}

b′(0,1) =
{

(`0, (0, 1)), (`priv, (0, 1))
}

b(0,1) = b′(0,1) ∪
{

(`f , (0, 1))
}

b′1 =
{

(`0, 1), (`0, 0), (`priv, 1), (`priv, 0),
(`pf , 0)

}
b1 = b′1 ∪

{
(`f , 0), (`f , 1)

}
1

Consider two beliefs reachable from the same2

belief, with two different sets of available actions,3

such that one is a subset of the other. We see that4

the belief reachable with the smaller set is a subset5

of the belief reachable with the larger set. In fact,6

restricting the system to only a subset of actions7

only restricts the possible behaviours, and cannot8

add any.9

�10

If there is more than one clock, we extend11

our abuse of notation for regions to (`, τ1, . . . , τH),12

where each τi is either an interval or an integer.13

Note that this notation does not take into account14

the comparison between clocks but this is accept-15

able in the following example as the clocks always16

have the same fractional part.17

Example 10. Let A′opaque the TA depicted in18

Fig. 9a. With the invariant x ≤ 1 for `0 and y ≤ 219

for `priv, we have the following beliefs. Each region20

is written (`, τ1, τ2, τ3) with τ1 for x, τ2 for y and21

τ3 for z. The corresponding belief automaton is22

depicted in Fig. 9b.23

b
′
0 =
{

(`0, 0, 0, 0), (`priv, 0, 0, 0)
}

b0 = b
′
0 ∪
{

(`f , 0, 0, 0)
}

b
′
(0,1) =

{
(`0, (0, 1), (0, 1), (0, 1)), (`priv, (0, 1), (0, 1), (0, 1))

}
b(0,1) = b

′
(0,1) ∪

{
(`f , (0, 1), (0, 1), (0, 1))

}
b

′
1 =
{

(`0, 1, 1, 1), (`0, 1, 1, 0), (`0, 0, 1, 1), (`0, 0, 1, 0),

(`priv, 0, 1, 1), (`priv, 0, 1, 0), (`priv, 1, 1, 1), (`priv, 1, 1, 0)
}

b1 = b
′
1 ∪
{

(`f , 1, 1, 1), (`f , 1, 1, 0), (`f , 0, 1, 1), (`f , 0, 1, 0)
}

b
′
(1,2) =

{
(`0, (0, 1), (1, 2), (0, 1)), (`priv, (0, 1), (1, 2), (0, 1)),

(`priv, (1,+∞), (1, 2), (0, 1))
}

b(1,2) = b
′
(1,2) ∪

{
(`f , (0, 1), (1, 2), (0, 1))

}
b

′
2 =
{

(`0, 1, 2, 1), (`0, 1, 2, 0), (`0, 0, 2, 1), (`0, 0, 2, 0),

(`priv, 0, 2, 1), (`priv, 0, 2, 0), (`priv, (1,+∞), 2, 1),
(`priv, (1,+∞), 2, 0), (`priv, 1, 2, 1), (`priv, 1, 2, 0),

(`p
f
, 0, 2, 1), (`p

f
, 0, 2, 0)

}
b2 = b

′
2 ∪
{

(`f , 1, 2, 1), (`f , 1, 2, 0),
}

b
′
(2,3) =

{
(`0, (0, 1), (2,+∞), (0, 1))

}
b(2,3) = b

′
(2,3) ∪

{
(`f , (0, 1), (2,+∞), (0, 1))

}
b3 = b

′
3 ∪
{

(`f , 0, (2,+∞), 1), (`f , 0, (2,+∞), 0),

(`f , 1, (2,+∞), 1), (`f , 1, (2,+∞), 0)
}

b
′
3 =
{

(`0, 1, (2,+∞), 1), (`0, 1, (2,+∞), 0), (`0, 0, (2,+∞), 1),

(`0, 0, (2,+∞), 0)
}

� 24

5.3.1 Controlled belief automaton and 25

encountered beliefs 26

We will introduce in Definition 16 a version of the 27

belief automaton controlled by a meta-strategy φ. 28

One transition of the controlled belief automa- 29

ton will group all possible sequences of transitions 30

made in the belief automaton between two strat- 31

egy changes in φ. We thus need to keep track, 32

in the states, of the sequence of strategy choices 33

made until that state is reached, together with 34

the current belief. To do so, we first introduce a 35

notation: 36

• φk,0 = φ([k, k]); 37

• if φ((k, k + 1)) = (ν1, . . . , νmk), then for all 38

1 ≤ i ≤ mk, φk,i = νi. 39

In an execution of the belief automaton, the 40

time elapsed can be inferred from the number of 41

actions of the form (1, ·) that have been taken so 42

far. If this number is of the form 2k, then exactly 43

k time units have elapsed. If it is of the form 44

2k + 1 then the time elapsed is within the inter- 45

val (k, k + 1). We thus need a function that, given 46

a sequence of elements in {0, 0+, 1} × 2Σc stat- 47

ing when clock z has changed from one region to 48

another, and the consecutive choices of enabled 49

actions made by the meta-strategy so far, gives 50

the next choice the meta strategy will make and 51

whether or not z will change region next. 52

18



`0

`priv

`f

x ≤ 1

y ≤ 2

e1
x = 1

u
x← 0

e 2

x
= 0

u

a
e4

e3
x = 0u

(a) TA A′opaque

⊥

b0

b′0

b(0,1)

b′(0,1)

b1

b′1

b(1,2)

b′(1,2)

b2

b′2

b(2,3)

b′(2,3)

b3 b′3

0, ∅

0, {a}

1, {a}

1, ∅

1,
{a
}

1, ∅

1, {a}

1, ∅

0+
, ∅

1,
{a
}

1, ∅

0
+
, {
a}

1, {a}

1, ∅

1,
{a
}

1, ∅

1, {a}

1, ∅

0+
, ∅

1,
{a
}

1, ∅

0
+
, {a}

1, {a}

1, ∅

1,
{a
}

1, ∅

1, {a}

1, ∅

0+
, ∅

1, {
a}

1, ∅

0
+
, {
a}

1, {a}

1, ∅

1, {a}

1, ∅

0+, {a}

0+, ∅

0+, {a}

0+, ∅

0+, {a}

0+, ∅

(b) Belief automaton BA′
opaque

Fig. 9: A′opaque and the corresponding belief automaton

Given a sequence v ∈ ({0, 0+, 1} × 2Σc)∗,1

denoting by 2k + k′ (with k ∈ N and k′ ∈ {0, 1})2

the number of actions of the form (1, ·) in v, by i3

the length of the longest suffix of v without any4

action of the form (1, ·), and by mk the length of5

the sequence φ((k, k + 1)), the function nextφ is6

defined by:7

• nextφ(ε) = (0, φ0,0)8

• if v 6= ε and k′ = 0, nextφ(v) = (1, φk,1)9

• if k′ = 1 and i < mk, nextφ(v) = (0+, φk,i+1)10

• if k′ = 1 and i = mk, nextφ(v) = (1, φk+1,0)11

Example 11. Let φ a meta-strategy defined (on12

the interval [0, 1]) by: φ0,0 = E0, φ0,1 = E1, φ0,2 =13

E2, φ1,0 = E3. Then,14

• nextφ(ε) = (0,E0) (first case),15

• nextφ((0,E0)) = (1,E1) (second case),16

• nextφ((0,E0), (1,E1)) = (0+,E2) (third17

case),18

• nextφ((0,E0), (1,E1), (0+,E2)) = (1,E3)19

(fourth case).20

�21

Definition 16 (Controlled belief automa-22

ton). Given a belief automaton BA =23

(SBA ,ABA ,⊥, dBA) and a meta-strategy φ, we24

define BφA =
(
SB

φ
A ,AB

φ
A , (ε,⊥), dBφA

)
the belief25

automaton controlled by φ as follows:26

1. SB
φ
A = (ABA)∗ ×SBA is the set of states,27

2. AB
φ
A = ABA = {0, 0+, 1} × 2Σc is the28

alphabet,29

3. (ε,⊥) is the initial state,30

4. dB
φ
A ⊆ (SBφA × AB

φ
A × SB

φ
A) and31 (

(v, b), (†,E), (v · (†,E), b′)
)
∈ dB

φ
A if32

(b, (†,E), b′) ∈ dBA , and nextφ(v) = (†,E).33

� 34

In other words, the belief automaton con- 35

trolled by a meta-strategy φ retains only the tran- 36

sitions from the belief automaton that correspond 37

to the meta-strategy. 38

We now define the beliefs encountered by the 39

controlled belief automaton as sets obtained as 40

the union of every belief between a pair of choices 41

of the form (1,E), in other words, the beliefs on 42

an integer timestamp, or by regrouping the beliefs 43

visited during an open interval. We will see later 44

that this object is equal to the set of interval 45

beliefs IφA. 46

Definition 17 (Belief encountered by the con- 47

trolled belief automaton). A belief b is said to be 48

encountered by a controlled belief automaton BφA 49

if ((0,E), b) is reachable in BφA, or there exists 50

a sequence (v0, b0), . . . (vm, bm) of states of SBφA 51

such that 52

• ∀i ≤ m, (vi, bi) are reachable in BφA, 53

• ∀i ≤ m,nextφ(vi) = (†i,Ei), †i ∈ {0+, 1} 54

with †i = 1 iff i = 0 or i = m, 55

• ∀i < m, vi+1 = vi · (†i,Ei), 56

• b =
⋃m
i=1 bi. 57

The set of beliefs encountered by BφA is denoted 58

by EφA. � 59

5.3.2 Feasible runs 60

Let us now relate a controlled belief automaton 61

and runs of A. In the following definition, v is a 62

sequence of subsets of controllable actions ( which 63

19



will be associated later to a sequence of strategy1

choices).2

Definition 18 (Run admitting a sequence). Let3

A be a TA, ρ be a run of Adup and v ∈ (ABA)∗.4

We say that ρ admits v, denoted by ρ ` v, when5

either:6

(run reduced to the initial state) ρ = (`0,~0) and7

v = (0,E0) with E0 ⊆ Σc,8

or9

(normal run) ρ = ρ′, (dn−1, en−1), (`n, µn) with10

en−1 = (`n−1, g, a, R, `n) and one of the following11

holds:12

1. dn−1 = 0, ρ′ ` v, v = v′ · (†,E) and13

a ∈ E ∪ Σu ∪ {ε},14

2. 0 < dn−1 < 1, v = v′ · (1,E0) · (†1,E1) · · ·15

(†m−1,Em−1) · (†m,Em), a ∈ Em ∪ Σu ∪ {ε},16

for all 1 ≤ k < m, †k = 0+, and one of the17

following holds:18

(a) fr (µn−1(z)) 6= 0, fr (µn(z)) 6= 0,19

†m = 0+, and there exists i, 0 ≤ i ≤ m,20

ρ′ ` v′ · (1,E0) · (0+,E1) · · · (†′,Ei),21

(b) fr (µn−1(z)) = 0, ρ′ ` v′, and either22

m = 0 or †m = 0+,23

(c) fr (µn(z)) = 0, †m = 1, and there exists24

i ∈ {0, . . . ,m − 1} such that ρ′ ` v′ ·25

(1,E0) · (0+,E1) · · · (†′,Ei),26

3. dn−1 = 1, v = v′·(1,E0)·(0+,E1) · · · (0+,Em)·27

(1,E) with 0 ≤ m and such that ρ′ ` v′, and28

a ∈ E ∪ Σu ∪ {ε}.29

�30

In the above definition, when the run has no31

transition, it is associated to a sequence of just32

one element, (0,E0) where 0 means that no time33

has passed, and E0 is the first choice of actions.34

For a non-empty run, condition 1 states that when35

two transitions of ρ occur at the same time, the36

corresponding set of actions has to be the same37

(as there will be only one set of actions enabled38

at a given time instant). Condition 3 corresponds39

to two actions separated by exactly one time unit.40

In this case (since clock z is reset at every inte-41

ger time) the two actions occur at an integer time.42

The sequence associated to ρ′ is completed with a43

sequence of pairs where the first and last one cor-44

respond to a change of region for z (showed by the45

“1” as first element). Condition 2 is more complex.46

Let us denote tn−1 the time instant of the end47

of ρ′, and tn the time instant of the end of ρ. There48

is a sequence v′′ such that ρ′ ` v′′ and such that49

the following holds. If both time instants have a50

non-0 fractional part (condition 2a), then we com- 51

plete v′′ with a (possibly empty) sequence where 52

every pair has a first component equal to 0+, 53

as z does not switch region outside integer time 54

instants. If only tn−1 is an integer (condition 2b), 55

then we add to v′′ a sequence starting with a 56

region change (first component equal to 1), and 57

if only tn is an integer (condition 2c), then v′′ 58

is completed with a non empty sequence ending 59

by a region change (first component of the pair 60

equals 1). 61

Definition 19 (Feasible run). Let A be a TA, 62

ρ be a run of Adup and φ a meta-strategy. We 63

say that ρ is feasible in BφA when there exist v ∈ 64

(ABA)∗ and a belief b ∈ SBA such that ρ ` v, 65

(v, b) is reachable in BφA and r = [last(ρ)] ∈ b. � 66

Note that, from item 4 of Definition 16, there 67

is only one action possible in each belief of BφA, 68

and thus only one execution. For every feasi- 69

ble run ρ the corresponding v is then of the 70

form (0, φ0,0) · (1, φ0,1) · (0+, φ0,2) · · · (0+, φ0,m0) · 71

(1, φ1,0) · (1, φ1,1) · (0+, φ1,2) · · · (0+, φ1,m1) · · · , 72

where for all k, φ((k, k+1)) = φk,1, . . . , φk,mk with 73

mk ≥ 1. 74

Example 12. Consider again the TA Aopaque in
Fig. 2. Let σ be the strategy defined as follows:

σ(τ) =
{
{a} if τ ∈ N
∅ otherwise

Aopaque is fully ET-opaque with σ. 75

Let φ be a meta-strategy defined as follows: 76

• φi,0 = {a}, for all i ≤ 0, 77

• φi,1 = ∅, for all i ≤ 0. 78

First note that σ |= φ. Then, the first states of the 79

automaton BφAopaque
are depicted in Fig. 10. 80

Runs ρ1 and ρ2 are feasible in BφAopaque
:

ρ1 = (`0, 0), (1, e1), (`0, 0), (0, e2), (`priv, 0),
(0, e3), (`pf , 0)

ρ2 = (`0, 0), (1, e1), (`0, 0), (0, e4), (`f , 0)

For v = (0, {a}) · (1, ∅) · (1, {a}) a sequence of 81

actions in the automaton BφAopaque
, we have ρ1 ` v 82

and ρ2 ` v. � 83

We can now link a run and a meta-strategy. 84

Lemma 3 (Strategies and run feasibility). Let A 85

be a TA, ρ a run of Adup and φ a meta-strategy. 86

There exist σ |= φ such that ρ is σ-compatible iff 87

ρ is feasible in BφA. 88

20



(ε,⊥)
(
(0, {a}), b0

) (
(0, {a}) · (1, ∅), b′(0,1)

)

(
(0, {a}) · (1, ∅) · (1, {a}), b1

)(
(0, {a}) · (1, ∅) · (1, {a}) · (1, ∅), b′(0,1)

)

0, {a} 1, ∅

1, {a}
1, ∅1, {a}

Fig. 10: BφAopaque
: First states of the controlled belief automaton for TA Aopaque and meta-strategy φ

Proof. =⇒ Let σ |= φ be a strategy and1

ρ be a σ-compatible run of Adup s.t.2

ρ = (`0,~0), (d0, e0), . . . , (dn−1, en−1), (`n, µn).3

We build inductively from ρ a sequence4

v ∈ (ABA)∗ such that ρ ` v and the sequence5

v can be fired in BφA.6

As ρ is σ-compatible, for all 0 ≤ i < n,7

(`i, µi,
∑
j<i dj)

di,ei−−−→σ (`i+1, µi+1,
∑
j≤i dj).8

First for ρ0 = (`0,~0), we set v0 =9

(0, φ([0, 0])) = nextφ(ε). By construction of10

the controlled belief automaton, nextφ(ε) is11

precisely the action allowed in the initial12

state of BφA and there exists a belief b0 such13

that (v0, b0) is reachable in BφA.14

Now, let us assume that we have15

built a sequence vi such that ρi =16

(`0,~0), (d0, e0), . . . , (di−1, ei−1), (`i, µi) ` vi17

with i < n, and a belief bi such that (vi, bi)18

is reachable in BφA. We define vi+1 by com-19

pleting vi with all the actions (in order) of20

the controlled belief automaton correspond-21

ing to the changes in the strategy σ between22

time instants
∑
j<i dj excluded and

∑
j≤i dj23

included.24

More precisely, following the definition of25

admissible sequence, we have three possible26

cases:27

– di = 0, in which case the strategy has not28

changed since the two consecutive tran-29

sitions occur at the same time. We thus30

set vi+1 = vi.31

– di = 1, the time between two resets of32

clock z. In this case
∑
j<i dj = k ∈ N4

33

and, if φ((k, k + 1)) = φk,1, . . . , φk,m,34

we set vi+1 = vi · (1, φk,1), (0+, φk,2), . . . ,35

(0+, φk,m), (1, φk+1,0). This construction36

respects the properties of Definition 1837

(since σ |= φ, the last action of ρi+1 fired38

4Since clock z is reset precisely every time unit, fr (µi(z)) =
fr
(∑

j<i
dj
)
and so

∑
j<i

dj ∈ N iff fr (µi(z)) = 0.

at time k+1 has to belong to φk+1,0), so 39

we have ρi+1 ` vi+1. 40

– 0 < di < 1. Let k be the integral part of 41∑
j<i dj , φ((k, k + 1)) = φk,1, . . . , φk,m, 42

ι1, . . . , ιm the ordered partition of (k, k+ 43

1) corresponding to the changes of strat- 44

egy for σ in this interval and ι0 = [k, k], 45

ιm+1 = [k+1, k+1]. Denoting l the index 46

such that
∑
j<i dj ∈ ιl and l′ the index 47

such that
∑
j≤i dj ∈ ιl′ , then if l = l′ 48

we have vi+1 = vi, otherwise vi+1 = 49

vi · (†l+1, φk,l+1) · · · (†l′ , φk,l′) where: 50

∗ if l′ = m + 1, we define φk,m+1 as 51

φk+1,0; 52

∗ †1 = †m+1 = 1, and for all values 53

1 < l′′ < m+ 1, †l′′ = 0+. 54

In every case above (whether l′ = m+ 1 55

or not), since σ |= φ and given our choice 56

of l′ such that the next action takes place 57

during ιl′ , we ensure that the next action 58

ai of ei belongs to φk,l′ . 59

This construction of v thus respects at 60

each step the definition of admissibility and 61

thus ρ ` v. Furthermore, our construction 62

also ensures that, for every v′, v′′ such that 63

v = v′ · (†, ν) · v′′, nextφ(v′) = (†, ν). Thus, 64

by definition of the controlled belief automa- 65

ton, we have that the actions of v can be fired 66

in this order in BφA and hence the existence 67

of a belief b such that (v, b) is reachable in 68

BφA. Since the sequence v has been built pre- 69

cisely to follow all the strategy’s changes that 70

have occured during ρ, we also get that the 71

belief b contains the last state of ρ and thus 72

r = [last(ρ)] ∈ b. 73

⇐= Let ρ be a feasible run in BφA. By def- 74

inition there is a sequence v such that 75

ρ ` v and such that all actions of v can 76

be executed in order in BφA. As claimed 77

before, this sequence is of the form (0, φ0,0) · 78

(1, φ0,1) · (0+, φ0,2) · · · (0+, φ0,m0)· (1, φ1,0) · 79

(1, φ1,1) · (0+, φ1,2) · · · (0+, φ1,m1) where for 80

21



all k, φ((k, k + 1)) = φk,1, . . . , φk,mk with1

mk ≥ 1. We will now construct a strategy σ2

such that σ |= φ and ρ is σ-compatible.3

Let σ be a strategy such that ∀k ∈ N:4

– σ(k) = φ([k, k]);5

– if no event of ρ occur in interval (k, k + 1)6

then, with mk the number of strat-7

egy changes for φ during this inter-8

val, we set ι1 = (k, k + 1/mk) and9

for all 1 < j ≤ mk, ιj =[k + (j − 1)/mk,10

k + j/mk). The strategy σ is then11

defined on each ιj by φk,j ;12

– if one or more action of ρ occur in13

interval (k, k + 1) then we need to con-14

strain the ordered partition so that the15

resulting σ matches those actions. The16

construction of v precisely tells to which17

choice of the meta-strategy correspond18

each action of ρ. We thus get, for every19

j ≤ mk, a (possibly empty) set of time20

instants at which transitions occur in21

ρ for the strategy choice φk,j . If the22

set is not empty, we note tj the first of23

those instants. If the set is empty, we24

define an “artificial” tj to help build the25

ordered partition afterwards. We denote26

by t′j the global time of the last event27

that occured “before”, i.e., associated to28

a (†, φk,j′) in v with j′ < j (in case no29

such event exists within (k, k+1), we set30

t′j = k and j′ = 0), by t′′j the global time31

of the first event that occured “after”,32

i.e., associated to an element (†, φk,j′′)33

in v with j′′ > j, (in case no such event34

exists within (k, k+ 1), we set t′′j = k+ 135

and j′′ = mk + 1), we can then set36

tj = t′j + (t′′j − t′j) ∗ (j − j′)/(j′′ − j′).37

This formula gives uniformly dis-38

tributed artificial tjs. Based on these39

time instants, we can define an ordered40

partition ι1, · · · , ιmk with tmk+1 = k+1:41

∗ ι1 = (k, t2);42

∗ for all 1 < j ≤ mk, ιj = [tj , tj+1).43

The strategy σ is then defined on each ιj44

by φk,j .45

We have thus defined a strategy σ |= φ46

(both make the same choices at every integer47

time k and in the same order in every inter-48

val of the form (k, k + 1)) and such that ρ is49

σ-compatible, which concludes the proof. �50

`0

`1 `2

`3 `priv `f

e 1

0 <
x
<

1

a
e4

0 < x < 1
a

x← 0

u1

e2
1 < x < 2

b
e3x = 2u2

e5
x = 1

b u3

e6
x = 2

e7

Fig. 11: TA Acounterex

Corollary 1. Let A be a TA, and φ a meta- 51

strategy, EφA = IφA. 52

Proof. Let A be a TA, and φ a meta-strategy. 53

Let bI ∈ IφA. We focus on the case where there 54

exists k ∈ N, such that bI = bφk+ (the inter- 55

val belief associated to I = (k, k + 1)) as the 56

case where bI = bφk (the interval belief associ- 57

ated to {k}) is simpler and can be obtained with 58

a similar proof. Let (v0, b0), . . . (vm, bm) be the 59

sequence used in Definition 17 where v1, . . . vm all 60

contain 2k + 1 elements of the form (1,E). Let 61

bE =
⋃m
i=1 bi ∈ EφA. Let us show that bE = bI . 62

Given r ∈ bI , then by definition of IφA, there 63

exists a run ρ such that ρ is σ-compatible with 64

σ |= φ, [last(ρ)] = r and dur(ρ) ∈ I. Thus, by 65

Lemma 3, ρ is feasible in BφA. By Definition 19, 66

there exists v and b such that ρ ` v, and (v, b) is 67

reachable in BφA. Moreover, dur(ρ) ∈ I is equiva- 68

lent to v containing exactly 2k+1 elements of the 69

form (1,E). Hence, there exists 1 ≤ i ≤ m such 70

that (v, b) = (vi, bi). Hence, r ∈ bi ⊆ bE . 71

Conversely, given r ∈ bE , there exists 1 ≤ 72

i ≤ m such that r ∈ bi. By following vi in the 73

Belief automaton, we can build a feasible run ρ 74

admitting vi and such that [last(ρ)] = r. Thus, 75

by Lemma 3, there exists σ |= φ, such that ρ is 76

σ-compatible. Again, as vi contains exactly 2k+1 77

elements of the form (1,E), dur(ρ) ∈ I. Hence, by 78

definition of IφA, r ∈ bI . � 79

5.4 Justifying meta-strategies 80

The following example shows why the results 81

in [ADLL24] were distorted, and why adding the 82

notion of meta-strategy corrects this. 83

22



Example 13. Let Acounterex be the TA depicted1

in Fig. 11. The upper path, through locations `12

and `2, allows public runs of duration of 2 units of3

time. The lower path, through transition u1 and4

location `priv, allows private runs of duration of 25

time units. Finally, the middle path, through tran-6

sitions a and b, and location `priv, allows private7

runs of durations in (2, 3).8

Because of the reset of x on the transition9

between `0 and `3, finding a strategy that makes10

Acounterex opaque means finding a strategy that11

prevent reaching `priv by `3. An acceptable strat-12

egy allows a somewhen in (0, 1) and b somewhen13

in (1, 2) but prohibits b if a was allowed 1 time14

unit before.15

Then, we can define a strategy σ that makes
Acounterex opaque, for example:

σ(τ) =

 {a} if τ ∈ (0, 0.3)
{b} if τ ∈ (1.3, 2)
∅ otherwise

Let φ the meta-strategy such that σ |= φ.16

Then, the only path in BφAcounterex is v = (0, ∅) ·17

(1, {a}) · (0+, ∅)· (1, ∅) · (1, ∅) · (0+, {b}).18

But this meta-strategy allows to reach a belief19

containing a final private region but not a public20

one. Indeed, the run ρ = (`0, 0), (0.2, e4), (`3, 0),21

(1, e5), (`priv, 1), (1, e6), (`f , 2), with dur(ρ) = 2.2,22

is feasible in BφAcounterex
but is not σ-compatible23

(but there exists σ′ |= φ such that it is σ′-24

compatible.)25

Finally, the conclusion is that the meta-26

strategy (named b-strategy in [ADLL24]) is less27

precise than the strategy can be, i.e., the meta-28

strategy can allow behaviours that the strategy29

prevent, which is why we are working here only30

with meta-strategies.31

�32

6 Solving ET-opacity problems33

through the belief automaton34

From Lemma 2 and Corollary 1, a meta-strategy35

ensures full ET-opacity if it avoids leaking encoun-36

tered beliefs in the controlled belief automaton.37

Intuitively, finding such a meta-strategy amounts38

to solving a one-player game on the belief automa-39

ton, where one needs to infinitely often select an40

action of the form (1,E) (in order for time to41

progress) and avoid the leaking beliefs. We will 42

thus translate this into solving a one-player Büchi 43

game. 44

More precisely, a one-player Büchi game can 45

be defined by a tuple G = (Q, q0,Σ, δG , G) where 46

Q is a set of states, q0 ∈ Q is the initial state, 47

Σ is a set of actions, δG ⊆ Q × Σ × Q describes 48

the transitions, and G ⊆ Σ is a set of “good” 49

actions. Starting from q0, at each step, the player 50

selects a transition from δG to reach a new state. 51

The player wins if transitions labelled by actions 52

from G are taken infinitely often (note that Büchi 53

games usually require that a set of “good” states 54

is visited infinitely often instead of actions, but 55

both frameworks are trivially equivalent). 56

Lemma 4 ([VW94]). Deciding the existence of a 57

winning strategy in a one-player Büchi game can 58

be done in NLOGSPACE. Moreover this strategy, 59

if it exists, can be constructed in polynomial time. 60

As shown in [ALL+23], the full ET-opacity 61

problem for timed automata (without control) is 62

decidable in NEXPTIME. The ability to control 63

the system slightly increases the complexity: 64

Theorem 2. The full ET-opacity meta-strategy 65

emptiness problem is decidable in EXPSPACE; 66

and the full ET-opacity meta-strategy synthesis 67

problem is solvable in 2EXPTIME. 68

Proof. Given a TA A, using the belief automa- 69

ton of A as a basis, we define the one-player 70

Büchi game G = ((SBA)2, (⊥, ∅),ABA , δdBA , G) 71

where G = {(†,E) ∈ ABA | † = 1} and 72

((b1, b2), (†,E), (b3, b4)) ∈ δdBA iff 73

• (b1, (†,E), b3) ∈ dBA , 74

• b4 = b3 if † = 1, b4 = b2 ∪ b3 otherwise, 75

• if † = 1, then b2 is not a leaking belief for full 76

ET-opacity. 77

In other words, we manipulate pairs of belief, 78

the first corresponding to the current state of the 79

belief automaton, while the second accumulates 80

the belief. It is important to note that when an 81

action labelled by a 1 is taken, this second compo- 82

nent contains the encountered belief correspond- 83

ing to the current interval. Hence, in G, we cannot 84

leave the current interval if the encountered belief 85

is leaking. 86

First, assume that a given TA A is fully ET- 87

opaque for a meta-strategy φ. By Lemma 2 and 88

Corollary 1, it means φ avoids leaking encoun- 89

tered beliefs in the controlled belief automaton. 90

Hence, it can be applied within G, as in the 91

23



controlled belief automaton, and the removal of1

the transitions from leaking interval beliefs does2

not affect it. By definition of a meta-strategy, φ3

selects infinitely often an action from G, ensur-4

ing the strategy is winning. Conversely, since a5

winning strategy of G has to take “good” actions6

infinitely often, the number of consecutive “non7

good” actions (matching the changes in the meta8

strategy within an interval (k, k+1)) is finite, and9

it directly entails a meta-strategy φ which, being10

winning in G, does not encounter a leaking belief.11

Hence, again by Lemma 2 and Corollary 1, A is12

fully ET-opaque with φ.13

By Lemma 4, the existence of a winning strat-14

egy in this game is decidable in NLOGSPACE in15

the size of the game. As G is based on the belief16

automaton, it consists in a form of determinisa-17

tion of the labelled Region Automaton. The latter18

is exponential in the size of the TA, and the19

determinisation can produce a second exponen-20

tial, hence G is at most doubly exponential. Hence,21

solving G is in EXPSPACE (the non-determinism22

can freely be removed thanks to Savitch theorem,23

which implies that EXPSPACE = NEXPSPACE).24

Moreover, through the computation of a solution25

in G, one directly obtains that the full ET-opacity26

meta-strategy synthesis problem is solvable in27

2EXPTIME. �28

7 Weak and existential29

ET-opacity30

In this Section as well as in Section 8, we will31

consider a few variants opacity notions. In most32

cases, the structure of the proofs are similar to the33

one for full ET-opacity and as such is not repeated34

here.35

More precisely, in this Section we study two36

other versions of opacity [ALL+23], namely weak37

ET-opacity (in which it is harmless that the38

attacker deduces that the private location was not39

visited) and ∃-ET-opacity (in which we are sim-40

ply interested in the existence of one execution41

time for which opacity is ensured). In Section 842

we will consider variants relaxing the accuraty of43

the measure of the attacker.44

7.1 Definitions45

We recall definitions of weak and existential ET-46

opacity from [ALL+23].47

Definition 20 (Weak ET-opacity). A TA A 48

is weakly ET-opaque when DVisitpriv(A) ⊆ 49

DVisitpub(A). � 50

Definition 21 (Existential ET-opacity). A TA A 51

is existentially ET-opaque (or ∃-ET-opaque) when 52

DVisitpriv(A) ∩DVisitpub(A) 6= ∅. � 53

That is, the TA is weakly ET-opaque when- 54

ever, for any run of duration d reaching a final 55

location after visiting `priv, there exists another 56

run of the same duration reaching a final location 57

but not visiting the private location. In addition, 58

whenever there is at least one private run such 59

that there exists a public run of the same duration, 60

the TA is ∃-ET-opaque. 61

Example 14. We have seen in Example 3 that 62

A1 (given in Fig. 1a) is not fully ET-opaque. How- 63

ever, A1 is ∃-ET-opaque since, for example, 1 ∈ 64

DVisitpriv(A) ∩ DVisitpub(A) 6= ∅. Furthermore, 65

since we can reach `f at any time without visit- 66

ing `priv (and therefore DVisitpub(A1) = [0,∞)), 67

it holds that DVisitpriv(A1) ⊆ DVisitpub(A1) and 68

A1 is therefore weakly ET-opaque. � 69

Example 15 (weakly ET-opaque TA). Consider 70

again the TA Aopaque in Fig. 2. Recall from 71

Example 4 that strategy σ1 is such that ∀τ ∈ 72

R≥0, σ(τ) = {a}, i.e., a is allowed anytime. Recall 73

that DVisitpriv
σ1

(A) = N while DVisitpub
σ1

(A) = 74

R≥0. Therefore DVisitpriv
σ1

(A) ⊆ DVisitpub
σ1

(A), 75

and hence Aopaque is weakly ET-opaque with σ1. 76

� 77

Strategies and weak and existential 78

ET-opacity 79

We lift Definition 7 to weak and existential ET- 80

opacity. 81

Definition 22 (Weak and existential ET-opacity 82

with a strategy). Given a strategy σ, 83

a TA A is weakly ET-opaque with σ whenever 84

DVisitpriv
σ (A) ⊆ DVisitpub

σ (A). 85

In addition,A is ∃-ET-opaque with σ whenever 86

DVisitpriv
σ (A) ∩DVisitpub

σ (A) 6= ∅. � 87

Similarly, we now lift Definition 12 to weak 88

and existential ET-opacity. 89

Definition 23 (Weak and existential ET-opacity 90

with a meta-strategy). Given a meta-strategy φ, 91

a TA A is weakly ET-opaque with φ whenever 92

DVisitpriv
φ (A) ⊆ DVisitpub

φ (A). 93

In addition,A is ∃-ET-opaque with φ whenever 94

DVisitpriv
φ (A) ∩DVisitpub

φ (A) 6= ∅. � 95

24



Problems1

We consider the following variations of the empti-2

ness problems defined in Section 3.3

Weak ET-opacity (resp. ∃-ET-opacity)
meta-strategy emptiness problem:
Input: A TA A
Problem: Decide the emptiness of the set
of meta-strategies φ such that A is weakly
ET-opaque (resp. ∃-ET-opaque) with φ.

4

Similarly, we define as follows their synthesis5

counterpart:6

Weak ET-opacity (resp. ∃-ET-opacity)
meta-strategy synthesis problem:
Input: A TA A
Problem: Synthesize a meta-strategy φ such
that A is weakly ET-opaque (resp. ∃-ET-
opaque) with φ.

7

7.2 Results for ∃-ET-opacity8

First, we focus on ∃-ET-opacity for which con-9

trol, as understood here, is useless. Indeed, the10

strategy of the controller can only prevent some11

behaviour, i.e., remove possible executions. How-12

ever, ∃-ET-opacity wonders whether there exists13

an opaque time in the TA, so adding a con-14

troller (that only removes execution times) cannot15

change the result. The following theorem proves16

this claim.17

Theorem 3. Let A be a TA. A is ∃-ET-opaque18

iff there exists a strategy σ such that A controlled19

by strategy σ is ∃-ET-opaque.20

Proof. =⇒ Assume that A is ∃-ET-opaque.21

Therefore, a strategy enabling all control-22

lable actions at all times does not restrict23

the behaviour, and therefore the controlled24

TA remains ∃-ET-opaque. Concretely, let σ25

be such that ∀τ ∈ R≥0 : σ(τ) = Σc.26

Then, DVisitpriv
σ (A) = DVisitpriv(A) and27

DVisitpub
σ (A) = DVisitpub(A), and hence28

because A is ∃-ET-opaque, DVisitpriv(A) ∩29

DVisitpub(A) 6= ∅ =⇒ DVisitpriv
σ (A) ∩30

DVisitpub
σ (A) 6= ∅, hence the A controlled by31

strategy σ is ∃-ET-opaque.32

⇐= Let A be a TA and σ a strategy such33

that A controlled by strategy σ is ∃-34

ET-opaque. From Definition 22, we have35

DVisitpriv
σ (A) ∩ DVisitpub

σ (A) 6= ∅. That36

is, there exists a duration d such that37

there exist a private run ρ and a pub- 38

lic run ρ′, both of duration d. Let ρ = 39

(`0,~0), (d0, e0), · · · , (dn−1, en−1), (`n, µ). For 40

all 0 ≤ i < n, ei = (`i, gi, ai, Ri, `′i), with 41

ai ∈ σ(
∑j≤i
j=0 dj)∪Σu. As σ(

∑j≤i
j=0 dj)∪Σu ⊆ 42

Σc ∪ Σu = Σ, the action ai is available when 43

A is not controlled and ρ ∈ Visitpriv(A). 44

With the same reasoning for ρ′, we have 45

that ρ′ ∈ Visitpub(A)—and therefore A is 46

∃-ET-opaque. 47

� 48

The same reasoning can apply to non-finitely- 49

varying strategies, as well as to meta-strategies: 50

Corollary 2. Let A be a TA. 51

• A is ∃-ET-opaque iff there exists a non- 52

finitely-varying strategy σ such that A con- 53

trolled by strategy σ is ∃-ET-opaque. 54

• A is ∃-ET-opaque iff there exists a meta- 55

strategy φ such that A is ∃-ET-opaque with 56

meta-strategy φ. 57

7.3 Results for weak ET-opacity 58

We now address weak ET-opacity which can be 59

derived from our analysis of full ET-opacity. We 60

adapt to weak ET-opacity the concept of leaking 61

belief from Definition 14. 62

Definition 24 (Leaking belief for weak ET-opac- 63

ity). A belief b is leaking for weak ET-opacity 64

when 65

• (b ∩ RFA ∩ PrivateA 6= ∅), and 66

• (b ∩ RFA ∩ PublicA = ∅). 67

� 68

We now adapt Lemma 2 to weak ET-opacity. 69

Lemma 5 (Beliefs characterization for weak 70

ET-opacity). A TA A is weakly ET-opaque with 71

a meta-strategy φ whenever, for all b ∈ IφA, b is 72

not leaking for weak ET-opacity. 73

Proof. This proof can be achieved similarly to the 74

proof of Lemma 2. � 75

Theorem 4. The weak ET-opacity meta-strategy 76

emptiness problem is decidable in EXPSPACE; 77

and the weak ET-opacity meta-strategy synthesis 78

problem is solvable in 2EXPTIME. 79

Proof. This proof can be achieved similarly to the 80

proof of Theorem 2, using Lemma 5 in place of 81

Lemma 2. � 82

25



8 Extension: robust definitions1

of ET-opacity2

So far, the attacker needed to measure the execu-3

tion time with an infinite precision—this is often4

unrealistic in practice [DWDMR04, BMS13]. We5

therefore consider variants of opacity where inter-6

vals of non-opaque execution times can be consid-7

ered acceptable as long as they are hard to detect,8

for instance by being of size 0, i.e., reduced to a9

point (note that there can be an infinite number10

of them).11

In order to formally define these new notions,12

we introduce new notations: given a set S, then13

let JSK denote the closure of S (i.e., the smallest14

closed set containing S) and let LSM denote the15

interior of S (i.e., the largest open set contained16

in S). Let ⊕ denotes the exclusive OR opera-17

tor such that, for two sets A and B, A ⊕ B =18

{v | v ∈ (A ∪B) \ (A ∩B)}.19

We introduce two new notions of opacity:20

1. almost full ET-opacity, where every punctual21

opacity violation is ignored, and22

2. closed full ET-opacity, where a punctual vio-23

lation is ignored only if it is followed or24

preceded by an opaque interval.25

8.1 Definitions and problems26

8.1.1 almost full ET-opacity27

Let us first define almost full ET-opacity, where28

every punctual opacity violation is ignored. That29

is, a TA is almost fully ET-opaque whenever30

all non-opaque durations are isolated from each31

other; that is, since these non-opaque durations32

must be punctual, then the interior of intervals of33

non-opaque durations must be empty.34

Definition 25 (Almost full ET-opacity). A TAA35

is almost fully ET-opaque when LDVisitpriv(A)⊕36

DVisitpub(A)M = ∅. �37

8.1.2 closed full ET-opacity38

Let us now define closed full ET-opacity, where a39

punctual violation is ignored only if it is followed40

or preceded by an opaque interval. That is, we say41

a TA is closed fully ET-opaque when the closure42

of the private durations equals the closure of the43

public durations.44

0 1 2 3

(a)

0 1 2 3

(b)

Fig. 12: Private (above in red) and public (below
in blue) durations in A2 (a) and A3 (b)

Definition 26 (Closed full ET-opacity). A TA A 45

is closed fully ET-opaque when JDVisitpriv(A)K = 46

JDVisitpub(A)K. � 47

A difference between both definitions is, for 48

example, whenever a non-opaque duration is such 49

that the immediately neighbouring durations do 50

not correspond to any accepting run (neither pub- 51

lic nor private). In that case, this non-opaque 52

duration will be left out by almost full ET-opacity, 53

but will still be considered non-opaque by closed 54

full ET-opacity. 55

We can consider Almost full ET-opacity and 56

Closed full ET-opacity with a meta-strategy φ 57

by replacing DVisitpriv(A) by DVisitpriv
φ (A) and 58

DVisitpub(A) by DVisitpub
φ (A). 59

8.1.3 Example 60

Example 16. Let A2 be a TA such that 61

DVisitpriv(A2) = [0, 2] and DVisitpub(A2) = 62

(0, 1) ∪ (1, 2). A2 is not fully ET-opaque (but 63

it is weakly ET-opaque). But LDVisitpriv(A2) ⊕ 64

DVisitpub(A2)M = L{0} ∪ {1} ∪ {2}M = ∅, so 65

A2 is almost fully ET-opaque. Note that look 66

at the interior of private and public interval 67

would not be equivalent: LDVisitpriv(A2)M 6= 68

LDVisitpub(A2)M as (0, 2) 6= ((0, 1)∪ (1, 2)). More- 69

over, JDVisitpriv(A2)K = JDVisitpub(A2)K = [0, 2] 70

so A2 is closed fully ET-opaque. 71

Now, let A3 be a TA such that 72

DVisitpriv(A3) = (0, 1) ∪ {2} and 73

DVisitpub(A3) = (0, 1). A3 is not fully ET- 74

opaque. LDVisitpriv(A3)⊕DVisitpub(A3)M = ∅ so 75

A3 is almost fully ET-opaque. JDVisitpriv(A3)K = 76

[0, 1] ∪ {2} 6= JDVisitpub(A3)K = [0, 1] so A3 is 77

not closed fully ET-opaque. � 78

8.1.4 Problems 79

We are interested in the same problems as before, 80

this time in the context of closed ET-opacity or 81

almost ET-opacity. Formally: 82

26



closed full ET-opacity (resp. almost
full ET-opacity) meta-strategy emptiness
problem:
Input: A TA A
Problem: Decide the emptiness of the set
of meta-strategies φ such that A is closed
fully ET-opaque (resp. almost fully ET-opaque)
with φ.

1

closed full ET-opacity (resp. almost
full ET-opacity) meta-strategy synthesis
problem:
Input: A TA A
Problem: Synthesize a meta-strategy φ such
that A is closed fully ET-opaque (resp. almost
fully ET-opaque) with φ.

2

8.2 Characterization3

A single belief is not sufficient to characterize a4

TA that is not almost ET-opaque (resp. closed).5

Indeed, suppose a time t such that bt is leaking for6

full ET-opacity. This means that a punctual vio-7

lation of opacity exists. This kind of violation can8

be allowed in the context of almost and closed full9

ET-opacity. It is problematic if the times around10

it are also a violation of opacity.11

More specifically, a violation to almost full12

ET-opacity corresponds to a succession of leaking13

beliefs, i.e., every punctual violation is ignored.14

On the other hand, a violation to closed full15

ET-opacity corresponds either to a succession of16

leaking beliefs, or to a unique leaking belief sur-17

rounded by beliefs that do not contain any final18

region. Intuitively, a punctual violation is ignored19

if it belongs to an interval where private and20

public final states can be reached.21

When considering meta-strategies, this issue22

is partially lifted as the behaviour of the system23

within an open interval is the same: given k ∈ N,24

and t, t′ ∈ (k, k + 1), bφt = bφt′ . This a conse-25

quence of the shrinking argument within the proof26

of Lemma 2. As a consequence, only a belief rep-27

resenting an interval can be leaking for almost full28

ET-opacity.29

We define formally leaking belief for almost30

full ET-opacity and closed full ET-opacity for a31

meta-strategy as follows.32

Definition 27 (Leaking belief for almost full33

ET-opacity). Let φ a meta-strategy, a belief b ∈34

IφA is leaking for almost full ET-opacity when it35

is leaking for full ET-opacity and there is k ∈ N 36

such that b = bk+. � 37

Definition 28 (Leaking belief for closed full 38

ET-opacity). Let φ a meta-strategy, a belief b ∈ 39

IφA is leaking for closed full ET-opacity when 40

either: 41

• it is leaking for almost ET-opacity, or 42

• there is k ∈ N such that b = bk, and 43

– b(k−1)+ ∪ RFA = ∅, 44

– b(k+1)+ ∪ RFA = ∅ and 45

– b is leaking for full ET-opacity 46

� 47

As previously, the almost full ET-opacity and 48

closed full ET-opacity of a TA can be character- 49

ized thanks to the interval beliefs. Both lemma 50

can be achieved with a proof similar to the proof 51

of Lemma 2. 52

Lemma 6 (Beliefs characterization for almost full 53

ET-opacity). A TA A is almost fully ET-opaque 54

with a meta-strategy φ iff, for all b ∈ IφA, b is not 55

leaking for almost full ET-opacity. 56

Lemma 7 (Beliefs characterization for closed full 57

ET-opacity). A TA A is closed fully ET-opaque 58

with a meta-strategy φ iff, for all b ∈ IφA, b is not 59

leaking for closed full ET-opacity. 60

8.3 Results 61

We can conclude positively for the problems on 62

closed full ET-opacity and almost full ET-opacity. 63

As for full ET-opacity, this result is due to the 64

equivalence between finding a meta-strategy for a 65

TA and finding a strategy in a variation of the cor- 66

responding belief automaton, and to the fact that 67

such a strategy corresponds to a winning strategy 68

in a one-player Büchi game. Hence, both follow- 69

ing result can be achieved similarly to the proof of 70

Theorem 2, using Lemma 7 in place of Lemma 2. 71

Note though that the game that one needs to build 72

when considering closed full ET-opacity is slightly 73

expanded compared to Theorem 2: a Boolean 74

must be included to note whether a singleton is 75

violating opacity and the previous interval belief 76

did not contain a region associated to a final loca- 77

tion. This information strengthens the constraint 78

on the next interval belief, requiring that it must 79

contain a region associated to a final location. 80

Theorem 5. The almost full ET-opacity finitely- 81

varying controller emptiness problem is decidable; 82

the almost full ET-opacity finitely-varying con- 83

troller synthesis problem is solvable. 84

27



Theorem 6. The closed full ET-opacity meta-1

strategy controller emptiness problem is decidable;2

the closed full ET-opacity meta-strategy controller3

synthesis problem is solvable.4

Remark 3. We can extend these notions of almost5

and closed full ET-opacity to their weak counter-6

parts, with similar results. �7

9 Conclusion8

We addressed here the control of a system mod-9

elled by a TA to make it fully ET-opaque10

(execution-time opaque). On the one hand, we11

showed that the strategy emptiness problem is12

undecidable. On the other hand, we showed that13

not only the strategy emptiness problem becomes14

decidable when considering meta-strategies (i.e.,15

in which we specify the order of—a finite number16

of—strategy changes within interval time units,17

without fixing their actual changing time), but18

also we can effectively solve the controller synthe-19

sis problem, by building such a controller.20

In addition, we studied two other versions of21

opacity from [ALL+23], namely ∃-ET-opacity (in22

which we are simply interested in the existence of23

one execution time for which opacity is ensured),24

and weak ET-opacity (in which it is harmless that25

the attacker deduces that the private location was26

not visited).27

We also addressed two extensions (closed full28

ET-opacity and almost full ET-opacity) which29

can relate to a robust setting where the attacker30

cannot have an infinite precision.31

Future works32

A natural next step will be to introduce timing33

parameters à la [ALL+23], and address control in34

that setting.35

Addressing the control for the definition of36

opacity (based on languages) as in [Cas09] would37

be interesting in two settings:38

1. the general setting, where the controller syn-39

thesis will be undecidable but may terminate40

for some semi-algorithms, and41

2. decidable subclasses that remain to be42

exhibited, presumably one-clock TAs, as43

in [ADL24].44

Moreover, an analysis of the strategy obtained45

to ensure opacity might lead to only a static46

modification of the structure (e.g., deletion of a 47

transition)—which will be interesting to study. 48

Finally, the implementation of this work is 49

on our agenda. While implementing the beliefs 50

directly would be straightforward, it would prob- 51

ably result in an unnecessary blowup, and there- 52

fore an adaptation with structures such as 53

zones [BBLP06] (which does not seem immediate) 54

should be designed. 55

Acknowledgments 56

This work is partially supported by ANR BisoUS 57

(ANR-22-CE48-0012) and by ANR TAPAS 58

(ANR-24-CE25-5742). 59

28



References1

[AA23] Johan Arcile and Étienne André.2

Timed automata as a formalism for3

expressing security: A survey on4

theory and practice. ACM Comput-5

ing Surveys, 55(6):1–36, 2023.6

[ABC+25] Étienne André, Jean-Luc Béchen-7

nec, Sudipta Chattopadhyay,8

Sébastien Faucou, Didier Lime,9

Dylan Marinho, Olivier H. Roux,10

and Jun Sun. Verifying timed prop-11

erties of programs in IoT nodes12

using parametric time Petri nets.13

Technical report, March 2025.14

[ABLM22] Étienne André, Shapagat Bolat,15

Engel Lefaucheux, and Dylan Mar-16

inho. strategFTO: Untimed control17

for timed opacity. In FTSCS, pages18

27–33. ACM, 2022.19

[AD94] Rajeev Alur and David L. Dill. A20

theory of timed automata. Theoret-21

ical Computer Science, 126(2):183–22

235, 1994.23

[ADDJI23] Eugene Asarin, Aldric Degorre,24

Catalin Dima, and Bernardo25

Jacobo Inclán. Bandwidth of26

timed automata: 3 classes. In27

FSTTCS, volume 284 of LIPIcs,28

pages 10:1–10:17. Schloss Dagstuhl29

- Leibniz-Zentrum für Informatik,30

2023.31

[ADL24] Étienne André, Sarah Dépernet,32

and Engel Lefaucheux. The33

bright side of timed opacity. In34

Kazuhiro Ogata, Meng Sun, and35

Dominique Méry, editors, ICFEM,36

volume 15394 of Lecture Notes in37

Computer Science, pages 51–69.38

Springer, December 2024.39

[ADLL24] Étienne André, Marie Duflot,40

Laetitia Laversa, and Engel41

Lefaucheux. Execution-time opac-42

ity control for timed automata. In43

Alexandre Madeira and Alexander44

Knapp, editors, SEFM, volume45

15280 of Lecture Notes in Com-46

puter Science, pages 347–365.47

Springer, November 2024.48

[AETYM21] Ikhlass Ammar, Yamen El Touati,49

Moez Yeddes, and John Mullins.50

Bounded opacity for timed systems. 51

Journal of Information Security 52

and Applications, 61:1–13, 2021. 53

[AFH99] Rajeev Alur, Limor Fix, and 54

Thomas A. Henzinger. Event- 55

clock automata: A determinizable 56

class of timed automata. The- 57

oretical Computer Science, 211(1- 58

2):253–273, 1999. 59

[AGW+24] Jie An, Qiang Gao, Lingtai Wang, 60

Naijun Zhan, and Ichiro Hasuo. 61

The opacity of timed automata. 62

In André Platzer, Kristin-Yvonne 63

Rozier, Matteo Pradella, and Mat- 64

teo Rossi, editors, FM, volume 65

14933 of Lecture Notes in Computer 66

Science, pages 620–637. Springer, 67

2024. 68

[AHV93] Rajeev Alur, Thomas A. Henzinger, 69

and Moshe Y. Vardi. Paramet- 70

ric real-time reasoning. In STOC, 71

pages 592–601. ACM, 1993. 72

[AK20] Étienne André and Aleksander 73

Kryukov. Parametric non- 74

interference in timed automata. In 75

ICECCS, pages 37–42, 2020. 76

[ALL+23] Étienne André, Engel Lefaucheux, 77

Didier Lime, Dylan Marinho, and 78

Jun Sun. Configuring timing 79

parameters to ensure execution- 80

time opacity in timed automata. In 81

TiCSA, volume 392 of Electronic 82

Proceedings in Theoretical Com- 83

puter Science, pages 1–26, 2023. 84

Invited paper. 85

[ALM23] Étienne André, Engel Lefaucheux, 86

and Dylan Marinho. Expiring opac- 87

ity problems in parametric timed 88

automata. In ICECCS, pages 89– 89

98, 2023. 90

[ALMS22] Étienne André, Didier Lime, Dylan 91

Marinho, and Jun Sun. Guarantee- 92

ing timed opacity using parametric 93

timed model checking. ACM Trans- 94

actions on Software Engineering 95

and Methodology, 31(4):1–36, 2022. 96

[AMPS98] Eugene Asarin, Oded Maler, 97

Amir Pnueli, and Joseph Sifakis. 98

Controller synthesis for timed 99

automata. IFAC Proceedings 100

29



Volumes, 31(18):447–452, 1998.1

Proceedings of the 5th IFAC Con-2

ference on System Structure and3

Control (SSC 1998).4

[BBLP06] Gerd Behrmann, Patricia Bouyer,5

Kim Guldstrand Larsen, and Radek6

Pelánek. Lower and upper bounds7

in zone-based abstractions of timed8

automata. International Journal9

on Software Tools for Technology10

Transfer, 8(3):204–215, 2006.11

[BCLR15] Gilles Benattar, Franck Cassez,12

Didier Lime, and Olivier H.13

Roux. Control and synthesis of14

non-interferent timed systems.15

International Journal of Control,16

88(2):217–236, 2015.17

[BDR08] Véronique Bruyère, Emmanuel18

Dall’Olio, and Jean-Francois19

Raskin. Durations and parametric20

model-checking in timed automata.21

ACM Transactions on Compu-22

tational Logic, 9(2):12:1–12:23,23

2008.24

[BFH+14] Nathalie Bertrand, Eric Fabre, Ste-25

fan Haar, Serge Haddad, and Loïc26

Hélouët. Active diagnosis for27

probabilistic systems. In Anca28

Muscholl, editor, FoSSaCS, volume29

8412 of Lecture Notes in Computer30

Science, pages 29–42. Springer,31

2014.32

[BFM15] Patricia Bouyer, Erwin Fang, and33

Nicolas Markey. Permissive strate-34

gies in timed automata and games.35

Electronic Communication of the36

European Association of Software37

Science and Technology, 72, 2015.38

[BFST02] Roberto Barbuti, Nicoletta De39

Francesco, Antonella Santone, and40

Luca Tesei. A notion of non-41

interference for timed automata.42

Fundamenta Informaticae, 51(1-43

2):1–11, 2002.44

[BMS13] Patricia Bouyer, Nicolas Markey,45

and Ocan Sankur. Robustness in46

timed automata. In RP, volume47

8169 of Lecture Notes in Computer48

Science, pages 1–18. Springer, 2013.49

Invited paper.50

[BMS15] Béatrice Bérard, John Mullins, and 51

Mathieu Sassolas. Quantifying 52

opacity. Mathematical Structures in 53

Computer Science, 25(2):361–403, 54

2015. 55

[BT03] Roberto Barbuti and Luca Tesei. 56

A decidable notion of timed non- 57

interference. Fundamenta Infor- 58

maticae, 54(2-3):137–150, 2003. 59

[Cas09] Franck Cassez. The dark side of 60

timed opacity. In ISA, volume 5576 61

of Lecture Notes in Computer Sci- 62

ence, pages 21–30. Springer, 2009. 63

[CHS+22] Aidong Chen, Chen Hong, Xinna 64

Shang, Hongyuan Jing, and Sen 65

Xu. Timing leakage to break SM2 66

signature algorithm. Journal of 67

Information Security and Applica- 68

tions, 67:103210, 2022. 69

[Dim01] Catalin Dima. Real-time automata. 70

Journal of Automata, Languages 71

and Combinatorics, 6(1):3–23, 72

2001. 73

[DWDMR04] Martin De Wulf, Laurent Doyen, 74

Nicolas Markey, and Jean-François 75

Raskin. Robustness and imple- 76

mentability of timed automata. In 77

FORMATS and FTRTFT, volume 78

3253 of Lecture Notes in Computer 79

Science, pages 118–133. Springer, 80

2004. 81

[JIDA22] Bernardo Jacobo Inclán, Aldric 82

Degorre, and Eugene Asarin. 83

Bounded delay timed channel cod- 84

ing. In FORMATS, volume 13465 85

of Lecture Notes in Computer 86

Science, pages 65–79. Springer, 87

2022. 88

[JT07] Marcin Jurdzinski and Ashutosh 89

Trivedi. Reachability-time games 90

on timed automata. In ICALP, 91

volume 4596 of Lecture Notes in 92

Computer Science, pages 838–849. 93

Springer, 2007. 94

[KKG24] Julian Klein, Paul Kogel, and 95

Sabine Glesner. Verifying opacity 96

of discrete-timed automata. In For- 97

maliSE, pages 55–65. ACM, 2024. 98

[LLHL22] Jun Li, Dimitri Lefebvre, Christo- 99

foros N. Hadjicostis, and Zhiwu 100

Li. Observers for a class of timed 101

30



automata based on elapsed time1

graphs. IEEE Transactions on2

Automatic Control, 67(2):767–779,3

2022.4

[Min67] Marvin L. Minsky. Computa-5

tion: Finite and infinite machines.6

Prentice-Hall, Inc., Upper Saddle7

River, NJ, USA, 1967.8

[Sta10] François-Xavier Standaert. Intro-9

duction to side-channel attacks. In10

Secure Integrated Circuits and Sys-11

tems, Integrated Circuits and Sys-12

tems, pages 27–42. Springer, 2010.13

[VW94] Moshe Y. Vardi and Pierre Wolper.14

Reasoning about infinite computa-15

tions. Information and Computa-16

tion, 115(1):1–37, 1994.17

[WZ18] Lingtai Wang and Naijun Zhan.18

Decidability of the initial-state19

opacity of real-time automata.20

In Symposium on Real-Time and21

Hybrid Systems - Essays Dedicated22

to Professor Chaochen Zhou on23

the Occasion of His 80th Birth-24

day, volume 11180 of Lecture Notes25

in Computer Science, pages 44–60.26

Springer, 2018.27

[WZA18] Lingtai Wang, Naijun Zhan, and28

Jie An. The opacity of real-29

time automata. IEEE Transac-30

tions on Computer-Aided Design31

of Integrated Circuits and Systems,32

37(11):2845–2856, 2018.33

[Zha24] Kuize Zhang. State-based opac-34

ity of labeled real-time automata.35

Theoretical Computer Science,36

987:114373, 2024.37

A Notation table 38

Timed automaton
A a timed automaton
Σ a finite set of actions of a TA
L a finite set of locations of a TA
`0 the initial location of a TA
`priv the private location of a TA
F the set of final locations of a TA
X a finite set of clocks
xi the ith clock
H the number of clocks
I(`) the invariant of location `
E the finite set of edges of a TA
e an edge
R a set of clocks to be reset
g a guard
µ a clock valuation
d a delay
z extra clock
ci largest constant for clock xi

39

Semantics
TTSA the semantics of TA A
S the set of states in TTSA
s0 the initial state in TTSA
s a state in TTSA
δ transition function of TTSA
e7→ a discrete transition with edge e
d7→ a delay transition with delay d
ρ a run
last(ρ) last state of run ρ

40

Regions
r a region
[s] equivalence class of s
RA regions set of A
RFA set of final regions of A
RA region automaton of A
ΣR set of actions of RA
δR transition function of RA
−→R a transition in RA

41

31



Opacity
Visitpriv(A) set of private runs of A
Visitpub(A) set of public runs of A
DVisitpriv(A) set of durations of private runs

of A
DVisitpub(A) set of durations of public runs of

A
DVisitpriv

σ (A) set of durations of private and
σ-compatible runs

DVisitpub
σ (A) set of durations of public and

σ-compatible runs
DVisitpriv

φ (A) set of durations of private and
σ-compatible runs, σ |= φ

DVisitpub
φ (A) set of durations of public and

σ-compatible runs, such that
σ |= φ

1

Strategies
Σc controllable actions
Σu uncontrollable actions
σ a strategy
φ a meta-strategy
ν a strategy within an interval
ι a subinterval
δσ transition function of the semantics

of A controlled by strategy σ
7→σ a discrete or delay transition in the

semantics of A controlled by strat-
egy σ

d,e−−→σ a transition with delay d and edge e
in the semantics of A controlled by
strategy σ

E set of activated controllable actions
σ |= φ σ satisfies φ

2

Duplicated TA
Adup a duplicated TA
Lpriv set of private states
Lpub set of public states
`priv a private state
PrivateA set of regions reachable on a run

visiting `priv
PublicA set of regions not reachable on a run

visiting `priv

3

Beliefs
bt belief for time t
bk+ belief for the interval (k, k + 1)
0, 0+, 1, † evolution of fr (z)
BA belief automaton of A
SBA states of BA
ABA actions of BA
v a sequence of actions of BA
ρ ` v ρ admits v
dBA transition function of BA
IφA set of interval beliefs reachable by a

meta-strategy φ
BφA controlled belief automaton of A and

meta-strategy φ
SB

φ
A states of controlled belief automaton

AB
φ
A actions of controlled belief automa-

ton
dB

φ
A transition function of controlled

belief automaton
EφA set of beliefs encountered by BφA

4

32


	Introduction
	Related works
	Opacity in timed automata
	Opacity in other formalisms
	Non-interference in timed automata
	Control


	Contributions
	About this manuscript

	Outline

	Preliminaries
	Clock constraints
	Timed automata
	Syntax of TAs
	Semantics of TAs
	Extra clock


	Regions
	Region automaton

	Execution-time opacity of a TA
	Durations


	Problem: Controlling TA to achieve ET-opacity
	Undecidability of the full ET-opacity strategy emptiness problem
	Overall intuition of the encoding
	Gadgets and actions
	Gadget 1act
	Gadgets GC1 and GC2
	Increment gadget
	Decrement gadget
	Zero-test gadget
	Termination gadget
	Conclusion of the proof



	The belief automaton
	Separating private and public runs
	Beliefs
	Belief automaton
	Controlled belief automaton and encountered beliefs
	Feasible runs

	Justifying meta-strategies

	Solving ET-opacity problems through the belief automaton
	Weak and existential ET-opacity
	Definitions
	Results for -ET-opacity
	Results for weak ET-opacity

	Extension: robust definitions of ET-opacity
	Definitions and problems
	almost full ET-opacity
	closed full ET-opacity
	Example
	Problems

	Characterization
	Results

	Conclusion
	Future works

	Notation table

