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Abstract4

Parametric timed automata (PTAs) extend the concept of timed automata, by allowing timing delays5

not only specified by concrete values but also by parameters, allowing the analysis of systems with6

uncertainty regarding timing behaviors. The full execution-time opacity is defined as the problem in7

which an attacker must never be able to deduce whether some private location was visited, by only8

observing the execution time. The problem of full ET-opacity emptiness (i.e., the emptiness over the9

parameter valuations for which full execution-time opacity is satisfied) is known to be undecidable10

for general PTAs. We therefore focus here on one-clock PTAs with integer-valued parameters over11

dense time. We show that the full ET-opacity emptiness is undecidable for a sufficiently large12

number of parameters, but is decidable for a single parameter, and exact synthesis can be effectively13

achieved. Our proofs rely on a novel construction as well as on variants of Presburger arithmetics.14

We finally prove an additional decidability result on an existential variant of execution-time opacity.15
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1 Introduction20

As surveyed in [10], for some systems, private information may be deduced simply by21

observation of public information. For example, it may be possible to infer the content of22

some memory space from the access times of a cryptographic module.23

The notion of opacity [23, 12] concerns information leaks from a system to an attacker;24

that is, it expresses the power of the attacker to deduce some secret information based on25

some publicly observable behaviors. If an attacker observing a subset of the actions cannot26

deduce whether a given sequence of actions has been performed, then the system is opaque.27

Time particularly influences the deductive capabilities of the attacker. It has been shown28

in [16] that it is possible for models that are opaque when timing constraints are omitted, to29

be non-opaque when those constraints are added to the models.30

For this reason, the notion is extended to timed opacity in [14], where the attacker can31

also observe time. The input model is timed automata (TAs) [1], a formalism extending32

finite-state automata with real-time variables called clocks. It is proved in [14] that this33

version of timed opacity is undecidable for TAs.34

In [7], a less powerful version of opacity is proposed, where the attacker has access35

only to the system execution time and aims at deducing whether a private location was36

visited during the system execution. This version of timed opacity is called execution-time37

opacity (ET-opacity). Two main problems are considered in [7]: 1) the existence of at least38

one execution time for which the system is ET-opaque (∃-ET-opacity), and 2) whether all39

execution times are such that the system is ET-opaque (called full ET-opacity). These two40

notions of opacity are proved to be decidable for TAs [5]. In the same works, the authors then41

extend ET-opacity to parametric timed automata (PTAs) [2]. PTAs are an extension of TAs42

where timed constraints can be expressed with timing parameters instead of integer constants,43

allowing to model uncertainty or lack of knowledge. The two problems come with two flavors:44

1) emptiness problems: whether the set of parameter valuations guaranteeing a given version45
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of opacity is empty or not, and 2) synthesis problems: synthesize all parameter valuations46

for which a given version of opacity holds. Both emptiness problems ∃OE (∃-ET-opacity47

emptiness) and FOE (full-ET-opacity emptiness) are proved undecidable for PTAs, while48

decidable subclasses are exhibited [7, 5]. A semi-algorithm (i.e., that may not terminate, but49

is correct if it does) is provided to solve full ET-opacity synthesis (hereafter FOS) in [7].50

1.1 Contributions51

We address here full-ET-opacity emptiness (FOE) and synthesis (FOS), and ∃-ET-opacity52

emptiness (∃OE) and synthesis (∃OS), for PTAs with integer-valued parameters over dense53

time with the following theoretical main contributions:54

1. We prove that FOE is undecidable (Corollary 29) for PTAs with a single clock and a55

sufficiently large number of parameters.56

2. We prove in contrast that FOE is decidable (Corollary 30) for PTAs with a single clock57

and a single parameter.58

3. We prove that ∃OE is decidable (Theorem 31) for PTAs with a single clock and arbitrarily59

many parameters. We also exhibit a better complexity for a single parameter over discrete60

time (Theorem 33).61

Our contributions are summarized in Table 1. In order to prove these results, we improve62

on the semi-algorithm from [7] for ∃OS and provide one for FOS. These solutions are based63

on the novel notion of parametric execution times (PET). The PET of a PTA is the total64

elapsed time and associated parameter valuations on all paths between two given locations.65

We provide a semi-algorithm for the computation of PET, and then show how to resolve ∃OS66

and FOS problems by performing set operations on PET of two complementary subsets of67

the PTA where we respectively consider only private paths and only non-private paths.68

We then solve the full ET-opacity emptiness (FOE) problem for PTAs with 1 clock and69

1 parameter, by rewriting the problems in a parametric variant of Presburger arithmetic.70

This is done by 1) providing a sound and complete method for encoding infinite PET for71

PTAs with 1 clock and arbitrarily many parameters over dense time; and 2) translating them72

into parametric semi-linear sets that can be handled using [22]. With these ingredients, we73

notably prove that: 1) FOE is undecidable in general for PTAs with 1 clock and sufficiently74

many parameters. This is done by reducing a known undecidable problem of parametric75

Presburger arithmetic (which undecidability comes from Hilbert 10th problem) to the FOE76

problem in this context. 2) ∃OE is decidable for PTAs with 1 clock and arbitrarily many77

parameters. This is done by reducing ∃OE to the existential fragment of Presburger arithmetic78

with divisibility, known to be decidable.79

1.2 Related works80

The negative result of [14] leaves hope for decidability only by modifying the problem (as81

in [7, 5]), or by restraining the model. In [26, 27], (initial state) opacity is shown to be82

decidable on a restricted subclass of TAs called real-time automata [15]. In [3], a notion of83

timed bounded opacity, where the secret has an expiration date, and over a time-bounded84

framework, is proved decidable.85

In [7], ∃-ET-opacity synthesis (∃OS) is solved using a semi-algorithm. The method is based86

on a self-composition of the PTA with m parameters and n clocks, where the resulting model87

is composed of m + 1 parameters and 2n + 1 clocks. The method terminates if the symbolic88

state space of this self-composition is finite. Our work proposes in contrast an approach89
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based on set operations on parametric execution times (PET) of both complementary subsets90

of the PTA where we respectively consider only private paths and only non-private paths.91

Those submodels are each composed of m + 1 parameters and n + 1 clocks. Our new method92

terminates if the symbolic state spaces of both submodels are finite. Another improvement93

is that the method described here also supports full timed opacity synthesis (FOS).94

The reachability emptiness problem (i.e., the emptiness over the valuations set for which95

a given target location is reachable) is known to be undecidable in general since [2]. The96

rare decidable settings require a look at the number of parametric clocks (i.e., compared at97

least once in a guard or invariant to a parameter), non-parametric clocks and parameters;98

throughout this paper, we denote these 3 numbers using a triple (pc, npc, p). Reachability99

emptiness is decidable for (1, ∗, ∗)-PTAs (“∗” denotes “arbitrarily many” for decidable cases,100

and “sufficiently many” for undecidable cases) over discrete time [2] or dense time with integer-101

valued parameters [9], for (1, 0, ∗)-PTAs over dense time over rational-valued parameters [8],102

and for (2, ∗, 1)-PTAs over discrete time [13, 17]; and it is undecidable for (3, ∗, 1)-PTAs over103

discrete or dense time [9], and for (1, 3, 1)-PTAs over dense time only for rational-valued104

parameters [24]. See [4] for a complete survey as of 2019.105

Section 2 recalls the necessary preliminaries. Section 3 introduces one of our main106

technical proof ingredients, i.e., the definition of PET, and PET-based semi-algorithms for107

∃OS and FOS. Section 4 considers the FOE problem over (1, 0, ∗)-PTAs (undecidable) and108

(1, 0, 1)-PTAs (decidable). Section 5 proves decidability of ∃OE for (1, 0, ∗)-PTAs. We also109

give a better complexity for (1, 0, 1)-PTAs over discrete time. Section 6 concludes.110

2 Preliminaries111

We let T be the domain of the time, which will be either non-negative reals R≥0 (continuous-112

time semantics) or naturals N (discrete-time semantics). Unless otherwise specified, we113

assume T = R≥0.114

Clocks are real-valued variables that all evolve over time at the same rate. We assume a115

set X = {x1 , . . . , xH} of clocks. A clock valuation is a function µ : X→ T. We write 0⃗ for the116

clock valuation assigning 0 to all clocks. Given a constant γ ∈ T, µ + γ denotes the valuation117

s.t. (µ + γ)(x) = µ(x) + γ, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ,118

denoted by [µ]R, as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.119

A (timing) parameter is an unknown integer-valued constant of a model. We assume a120

set P = {p1, . . . , pM} of parameters. A parameter valuation v is a function v : P→ N.121

We assume ▷◁ ∈ {<,≤, =,≥, >}. A clock guard C is a conjunction of inequalities over X∪P122

of the form x ▷◁
∑

1≤i≤M αipi + γ, with pi ∈ P, and αi, γ ∈ Z. Given C, we write µ |= v(C)123

if the expression obtained by replacing each x with µ(x) and each p with v(p) in C evaluates124

to true.125

2.1 Parametric timed automata126

Parametric timed automata (PTAs) extend TAs with parameters within guards and invariants127

in place of integer constants [2]. We also add to the standard definition of PTAs a special128

private location, which will be used to define our subsequent opacity concepts.129

▶ Definition 1 (PTA [2]). A parametric timed automaton (PTA) [2] A is a tuple130

A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E), where: 1) Σ is a finite set of actions; 2) L is a finite131

set of locations; 3) ℓ0 ∈ L is the initial location; 4) ℓpriv ∈ L is a special private location;132

5) ℓf ∈ L is the final location; 6) X is a finite set of clocks; 7) P is a finite set of parameters;133

CVIT 2016
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ℓpriv

ℓf
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(a) A PTA example A
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b = True

b = True

(c) Aℓpriv
ℓf
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(d) A¬ℓpriv
ℓf

Figure 1 A PTA example and its transformed versions. The yellow dotted location is urgent.

8) I is the invariant, assigning to every ℓ ∈ L a clock guard I(ℓ) (called invariant); 9) E is a134

finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and target locations, a ∈ Σ,135

R ⊆ X is a set of clocks to be reset, and g is a clock guard.136

Given a parameter valuation v, we denote by v(A) the non-parametric structure where137

all occurrences of a parameter pi have been replaced by v(pi).138

▶ Definition 2 (Reset-free PTA). A reset-free PTA A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E) is a139

PTA where ∀ (ℓ, g, a, R, ℓ′) ∈ E, R = ∅.140

▶ Example 3. Consider the PTA A in Figure 1a. It has three locations, one clock and141

two parameters (actions are omitted). “x ≤ p2” is the invariant of ℓpriv, and the transition142

from ℓ0 to ℓpriv has guard “x ≥ p1”. In this example, x is never reset, and therefore A143

happens to be reset-free.144

▶ Definition 4 (Semantics of a timed automaton (TA) [1]). Given a PTA A =145

(Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E) and a parameter valuation v, the semantics of the TA v(A)146

is given by the timed transition system (TTS) [18] Tv(A) = (S, s0, Σ ∪ R≥0,→), with147

1. S = {(ℓ, µ) ∈ L× RH
≥0 | µ |= I(ℓ)v}, s0 = (ℓ0, 0⃗),148

2. → consists of the discrete and (continuous) delay transition relations:149

a. discrete transitions: (ℓ, µ) e7→ (ℓ′, µ′), if (ℓ, µ), (ℓ′, µ′) ∈ S, and there exists e =150

(ℓ, g, a, R, ℓ′) ∈ E, such that µ′ = [µ]R, and µ |= v(g).151

b. delay transitions: (ℓ, µ) γ7→ (ℓ, µ + γ), with γ ∈ R≥0, if ∀γ′ ∈ [0, γ], (ℓ, µ + γ′) ∈ S.152

Moreover we write (ℓ, µ) (γ,e)−→ (ℓ′, µ′) for a combination of a delay and discrete transition153

if ∃µ′′ : (ℓ, µ) γ7→ (ℓ, µ′′) e7→ (ℓ′, µ′).154

Given a TA v(A) with concrete semantics (S, s0, Σ ∪ R≥0,→), we refer to the states155

of S as the concrete states of v(A). A run of v(A) is an alternating sequence of concrete156

states of v(A) and pairs of edges and delays starting from the initial state s0 of the form157

(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and (ℓi, µi)
(di,ei)−→ (ℓi+1, µi+1).158

Given a state s = (ℓ, µ), we say that s is reachable in v(A) if s appears in a run of v(A).159

By extension, we say that ℓ is reachable in v(A); and by extension again, given a set Ltarget160

of locations, we say that Ltarget is reachable in v(A) if there exists ℓ ∈ Ltarget such that ℓ is161

reachable in v(A).162
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Given a finite run ρ : (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (di−1, ei−1), (ℓn, µn), the duration of ρ163

is dur(ρ) =
∑

0≤i≤n−1 di. We also say that ℓn is reachable in time dur(ρ).164

Let us now recall the symbolic semantics of PTAs (see e.g., [19]). We first define operations165

on constraints. A linear term over X ∪ P is of the form
∑

1≤i≤H αixi +
∑

1≤j≤M βjpj + γ,166

with xi ∈ X, pj ∈ P, and αi, βj , γ ∈ Z. A constraint C (i.e., a convex polyhedron) over167

X ∪ P is a conjunction of inequalities of the form lt ▷◁ 0, where lt is a linear term. Given168

a parameter valuation v, v(C) denotes the constraint over X obtained by replacing each169

parameter p in C with v(p). Likewise, given a clock valuation µ, µ(v(C)) denotes the170

expression obtained by replacing each clock x in v(C) with µ(x). We write µ |= v(C)171

whenever µ(v(C)) evaluates to true. We say that v satisfies C, denoted by v |= C, if172

the set of clock valuations satisfying v(C) is nonempty. We say that C is satisfiable if173

∃µ, v s.t. µ |= v(C). We define the time elapsing of C, denoted by C↗, as the constraint174

over X and P obtained from C by delaying all clocks by an arbitrary amount of time. That175

is, µ′ |= v(C↗) if ∃µ : X → R≥0,∃γ ∈ R≥0 s.t. µ |= v(C) ∧ µ′ = µ + γ. Given R ⊆ X, we176

define the reset of C, denoted by [C]R, as the constraint obtained from C by resetting the177

clocks in R to 0, and keeping the other clocks unchanged. That is,178

µ′ |= v([C]R) if ∃µ : X→ R≥0 s.t. µ |= v(C) ∧ ∀x ∈ X
{

µ′(x) = 0 if x ∈ R

µ′(x) = µ(x) otherwise.179

We denote by C↓P the projection of C onto P, i.e., obtained by eliminating the variables not180

in P (e.g., using Fourier-Motzkin [25]).181

▶ Definition 5 (Symbolic state). A symbolic state is a pair (ℓ, C) where ℓ ∈ L is a location,182

and C its associated parametric zone.183

▶ Definition 6 (Symbolic semantics). Given a PTA A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E), the184

symbolic semantics of A is the labeled transition system called parametric zone graph185

PZG(A) = (E, S, s0,⇒), with186

S = {(ℓ, C) | C ⊆ I(ℓ)}, s0 =
(
ℓ0, (

∧
1≤i≤H xi = 0)↗ ∧ I(ℓ0)

)
, and187 (

(ℓ, C), e, (ℓ′, C′)
)
∈ ⇒ if e = (ℓ, g, a, R, ℓ′) ∈ E and188

C′ =
(
[(C ∧ g)]R ∧ I(ℓ′)

)↗ ∧ I(ℓ′) with C′ satisfiable.189

That is, in the parametric zone graph, nodes are symbolic states, and arcs are labeled by190

edges of the original PTA.191

2.2 Reachability synthesis192

We use reachability synthesis to solve the problems defined in Section 2.3. This procedure,193

called EFsynth, takes as input a PTA A and a set of target locations Ltarget , and attempts to194

synthesize all parameter valuations v for which Ltarget is reachable in v(A). EFsynth(A, Ltarget)195

was formalized in e.g., [20] and is a procedure that may not terminate, but that computes an196

exact result (sound and complete) if it terminates.197

2.3 Execution-time opacity problems [5]198

Given a TA v(A) and a run ρ, we say that ℓpriv is visited on the way to ℓf in ρ if ρ is of the199

form ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓm, µm), (dm, em), · · · (ℓn, µn) for some m, n ∈ N such that200

ℓm = ℓpriv, ℓn = ℓf and ∀0 ≤ i ≤ n− 1, ℓi ̸= ℓf . We denote by Visitpriv(v(A)) the set of those201

CVIT 2016
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runs, and refer to them as private runs. We denote by DVisitpriv(v(A)) the set of all the202

durations of these runs.203

Conversely, we say that ℓpriv is avoided on the way to ℓf in ρ if ρ is of the form204

(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓn, µn) with ℓn = ℓf and ∀0 ≤ i < n, ℓi /∈ {ℓpriv, ℓf}. We205

denote the set of those runs by Visitpriv(v(A)), referring to them as public runs, and by206

DVisitpriv(v(A)) the set of all the durations of these public runs. Therefore, DVisitpriv(v(A))207

(resp. DVisitpriv(v(A))) is the set of all the durations of the runs for which ℓpriv is visited208

(resp. avoided) on the way to ℓf . These concepts can be seen as the set of execution times209

from the initial location ℓ0 to the final location ℓf while visiting (resp. not visiting) a private210

location ℓpriv. Observe that, from the definition of the duration of a run, this “execution211

time” does not include the time spent in ℓf .212

We now recall formally the concept of “execution-time opacity (ET-opacity) for a set of213

durations (or execution times) D”: a system is ET-opaque for execution times D whenever,214

for any duration in D, it is not possible to deduce whether the system visited ℓpriv or not.215

▶ Definition 7 (Execution-time opacity (ET-opacity) for D). Given a TA v(A) and a set of216

execution times D, we say that v(A) is execution-time opaque (ET-opaque) for execution217

times D if D ⊆ (DVisitpriv(v(A)) ∩DVisitpriv(v(A))).218

In the following, we will be interested in the existence of such an execution time. We say219

that a TA is ∃-ET-opaque if it is ET-opaque for a non-empty set of execution times.220

▶ Definition 8 (∃-ET-opacity). A TA v(A) is ∃-ET-opaque if (DVisitpriv(v(A)) ∩221

DVisitpriv(v(A))) ̸= ∅.222

In addition, a system is fully ET-opaque if, for any possible measured execution time, an223

attacker is not able to deduce whether ℓpriv was visited or not.224

▶ Definition 9 (full ET-opacity). A TA v(A) is fully ET-opaque if DVisitpriv(v(A)) =225

DVisitpriv(v(A)).226

▶ Example 10. Consider again the PTA A in Figure 1a. Let v s.t. v(p1) = 1 and v(p2) = 4.227

Then v(A) is ∃-ET-opaque since there is at least one execution time for which v(A) is228

ET-opaque. Here, v(A) is ET-opaque for execution times [1, 3]. However, v(A) is not fully229

ET-opaque since there is at least one execution time for which v(A) is not ET-opaque. Here,230

v(A) is not ET-opaque for execution times [0, 1) (which can only occur on a public run) and231

for execution times (3, 4] (which can only occur on a private run).232

Let us consider the following decision problems:233

∃-ET-opacity p emptiness problem (∃OE):
Input: A PTA A
Problem: Decide the emptiness of the set of valuations v s.t. v(A) is ∃-ET-opaque.

234

Full ET-opacity p emptiness problem (FOE):
Input: A PTA A
Problem: Decide the emptiness of the set of valuations v s.t. v(A) is fully ET-opaque.

235

The synthesis counterpart allows for a higher-level problem aiming at synthesizing (ideally236

the entire set of) parameter valuations v for which v(A) is ∃-ET-opaque or fully ET-opaque.237

∃-ET-opacity p synthesis problem (∃OS):
Input: A PTA A
Problem: Synthesize the set V of valuations s.t. v(A) is ∃-ET-opaque, for all v ∈ V .

238
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Full ET-opacity p synthesis problem (FOS):
Input: A PTA A
Problem: Synthesize the set V of valuations s.t. v(A) is fully ET-opaque, for all v ∈ V .

239

3 A parametric execution times-based semi-algorithm for ∃OS and FOS240

One of our main results is the proof that both ∃OS and FOS can be deduced from set241

operations on two sets representing respectively all the durations and parameter valuations242

of the runs for which ℓpriv is reached (resp. avoided) on the way to ℓf . Those sets can be seen243

as a parametrized version of DVisitpriv(v(A)) and DVisitpriv(v(A)). In order to compute244

such sets, we propose here the novel notion of parametric execution times. (Note that our245

partial solution for PET construction and semi-algorithms for ∃OS and FOS work perfectly246

for rational-valued parameters too, and that they are not restricted to 1-clock PTAs.)247

3.1 Parametric execution times248

The parametric execution times (PET) are the parameter valuations and execution times of249

the runs to ℓf .250

▶ Definition 11. Given a PTA A with final location ℓf , the parametric execution251

times of A are defined as PET(A) = {(v, d) | ∃ρ in v(A) such that d = dur(ρ) ∧252

ρ is of the form (ℓ0, µ0), (d0, e0), · · · , (ℓn, µn) for some n ∈ N such that ℓn = ℓf and253

∀0 ≤ i ≤ n− 1, ℓi ̸= ℓf}.254

By definition, we only consider paths up to the point where ℓf is reached, meaning that255

executions times do not include the time elapsed in ℓf , and that runs that reach ℓf more than256

once are only considered up to their first visit of ℓf .257

▶ Example 12. Consider again the PTA A in Figure 1a. Then PET(A) is (d ≤ 3 ∧ p1 ≥258

0 ∧ p2 ≥ 0) ∨ (0 ≤ p1 ≤ 3 ∧ p1 ≤ d ≤ p2).259

3.1.1 Partial solution260

Synthesizing parametric execution times is in fact equivalent to a reachability synthesis where261

the PTA is enriched (in particular by adding a clock measuring the total execution time).262

▶ Proposition 13. Let A be a PTA, and ℓf the final location of A.263

Let A′ be a copy of A s.t.:264

a clock xabs is added and initialized at 0 (it does not occur in any guard or reset);265

a parameter d is added;266

ℓf is made urgent (i.e., time is not allowed to pass in ℓf), all outgoing edges from ℓf are267

pruned and a guard xabs = d is added to all incoming edges to ℓf .268

Then, PET (A) = EFsynth(A′, {ℓf}).269

Proof. See Appendix B.1. ◀270

▶ Example 14. Consider again the PTA A in Figure 1a. Then A′ is given in Figure 1b.271

As per Lemma 35 in Appendix A, there exist semi-algorithms for reachability synthesis,272

and hence for the PET synthesis problem—although they do not guarantee termination.273

CVIT 2016
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3.2 ∃OS and FOS problems274

Now, we detail how the PET can be used to compute the solution to both ∃OS and FOS. To275

do so, we will go trough a (larger) intermediate problem: the synthesis of both parameter276

valuations v and execution times for which v(A) is ET-opaque.277

∃-ET-opacity p-d synthesis problem (d-∃OS):
Input: A PTA A
Problem: Synthesize the set of parameter valuations v and executions times d s.t.
v(A) is ∃-ET-opaque and v(A) is ET-opaque for execution time d.

278

Full ET-opacity p-d synthesis problem (d-FOS):
Input: A PTA A
Problem: Synthesize the set of parameter valuations v and executions times d s.t. v(A)
is fully ET-opaque and v(A) is ET-opaque for execution time d.

279

First, given a PTA A and two locations ℓf and ℓpriv of A, let us formally define both sets280

representing respectively all the durations and parameter valuations of the runs for which281

ℓpriv is reached (resp. avoided) on the way to ℓf .282

Let Aℓpriv
ℓf

be a copy of A s.t.: 1) a Boolean variable1 b is added and initialized to False,283

2) b is set to True on all incoming edges to ℓpriv, 3) a guard b = True is added to all incoming284

edges to ℓf . The PTA Aℓpriv
ℓf

contains all runs of A for which ℓpriv is reached on the way to ℓf ,285

and PET (Aℓpriv
ℓf

) contains the durations and parameter valuations of those runs.286

Let A¬ℓpriv
ℓf

be a copy of A s.t. all incoming and outgoing edges to and from ℓpriv are287

pruned. The PTA A¬ℓpriv
ℓf

contains all runs of A for which ℓpriv is avoided on the way to ℓf ,288

and PET (A¬ℓpriv
ℓf

) contains the durations and parameter valuations of those runs.289

▶ Example 15. Consider again the PTA A in Figure 1a. Then Aℓpriv
ℓf

is given in Figure 1c,290

and A¬ℓpriv
ℓf

is given in Figure 1d.291

▶ Proposition 16. Given a PTA A, we have: d-∃OS(A) = PET (Aℓpriv
ℓf

) ∩ PET (A¬ℓpriv
ℓf

).292

Proof. See Appendix B.2. ◀293

▶ Example 17. Consider again the PTA A in Figure 1a. Then PET(Aℓpriv
ℓf

) is p1 ≤ d ≤294

p2 ∧ 0 ≤ p1 ≤ 3. Moreover, PET (A¬ℓpriv
ℓf

) is 0 ≤ d ≤ 3∧ p1 ≥ 0∧ p2 ≥ 0. Hence, d-∃OS(A) is295

0 ≤ p1 ≤ d ≤ p2 ∧ d ≤ 3.296

In order to compute d-FOS(A), we need to remove from d-∃OS(A) all parameter valua-297

tions v s.t. there is at least one run to ℓf in v(A) whose duration is not in Dv. Parameter298

valuations and durations of such runs are included in PET (A) \ d-∃OS(A), which is also the299

difference between PET (Aℓpriv
ℓf

) and PET (A¬ℓpriv
ℓf

). We note that difference as300

Diff (A) =
(
PET (Aℓpriv

ℓf
) ∪ PET (A¬ℓpriv

ℓf
)
)
\

(
PET (Aℓpriv

ℓf
) ∩ PET (A¬ℓpriv

ℓf
)
)

301

Diff (A) is made of a union of convex polyhedra C over P (i.e., the parameters of A) and d,302

which is the duration of runs. The parameter values in those polyhedra are the ones we do303

not want to see in d-FOS(A). Our solution thus consists in removing from d-∃OS(A) the304

values of P in Diff (A).305

1 Which is a convenient syntactic sugar for doubling the number of locations.
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▶ Proposition 18. Given a PTA A with parameter set P: d-FOS(A) = d-∃OS(A)\Diff (A)↓P.306

Proof. See Appendix B.3. ◀307

▶ Example 19. Consider again the PTA A in Figure 1a. Whe have Diff (A) is (0 ≤ p1 ≤308

3 < d ≤ p2) ∨ (0 ≤ d ≤ 3 ∧ d < p1 ∧ p2 ≥ 0) ∨ (0 ≤ p2 < d ≤ 3 ∧ p1 ≥ 0). Then Diff (A)↓P309

is (0 ≤ p1 ≤ 3 < p2) ∨ (0 < p1 ∧ p2 ≥ 0) ∨ (0 ≤ p2 < 3 ∧ p1 ≥ 0). Hence, d-FOS(A) is310

p1 = 0 ≤ d ≤ p2 = 3.311

Finally, obtaining ∃OS(A) and FOS(A) is trivial since, by definition, ∃OS(A) =312

(d-∃OS(A))↓P and FOS(A) = (d-FOS(A))↓P.313

▶ Example 20. Consider again the PTA A in Figure 1a. Then ∃OS(A) is 0 ≤ p1 ≤ p2∧p1 ≤ 3.314

And FOS(A) is p1 = 0 ∧ p2 = 3.315

3.2.1 On correctness and termination316

We described here a method for computing ∃OS(A) and FOS(A) for a PTA, that produces an317

exact (sound and complete) result if it terminates. It relies on the PET of two subsets of the318

PTA, which computation requires enrichment with one clock and one parameter. If they can319

be computed, those PET take the form of a finite union of convex polyhedra, on which are320

then applied the union, intersection, difference and projection set operations—that are known321

to be decidable in this context. Thus the actual termination of the whole semi-algorithm322

relies on the reachability synthesis of two (n + 1, m + 1)-PTAs. Reachability synthesis is323

known to be effectively computable for (1, m)-PTAs [8], and cannot be achieved for PTAs324

with 3 parametric clocks due to the undecidability of the reachability emptiness problem [2].325

For the semi-algorithm we proposed here for ∃OS and FOS problems, we therefore do not have326

any guarantees of termination, even with only one parametric clock (due to the additional327

clock xabs), although this might change depending on future results regarding the decidability328

of reachability synthesis for PTAs with 2 parametric clocks (a first decidability result for the329

emptiness only was proved for (2, ∗, 1)-PTAs over discrete time [17]).330

4 Decidability and undecidability of FOE for 1-clock-PTAs331

In this section, we:332

1. propose a method to compute potentially infinite PET on (1, 0, ∗)-PTAs, i.e., PTAs with333

1 parametric clock and arbitrarily many parameters (Section 4.1);334

2. prove decidability of the FOE problem for (1, 0, 1)-PTAs, by rewriting infinite PET in a335

variant of Presburger arithmetic (Section 4.2);336

3. prove undecidability of the FOE problem for (1, 0, ∗)-PTAs (Section 4.2).337

4.1 Encoding infinite PET for (1, 0, ∗)-PTAs338

Given a PTA A with exactly 1 clock, the goal of the method described here is to guarantee339

termination of the computation of PET(A) with an exact result. If applying the general340

method given in Section 3.1, it would amount to a reachability synthesis on a PTA with341

2 clocks, without guarantee of termination. The gist of this method is a form of divide342

and conquer, where we solve sub-problems, specifically reachability synthesis on sub-parts343

of A without adding an additional clock. The first step consists in building some reset-free344

PTAs, each representing a meaningful subset of the paths joining two given locations in A.345
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PET(A) is then obtained by combining the results of reachability synthesis performed on346

those reset-free PTAs. The result is encoded in a (finite) regular expression that represents an347

infinite union of convex polyhedra. Note that this method work perfectly for rational-valued348

parameters.349

4.1.1 Defining the set of reset-free PTAs350

Each of the PTAs we build describes parts of the behavior between two locations. More351

precisely, they represent all the possible paths such that clock resets may occur only on the352

last transition of the path. We first define the set of locations that we may need based on353

whether they are initial, final, or reached by a transition associated to a reset.354

▶ Definition 21 (Final-reset paths FrP(A, ℓf)). Let A be a 1-clock PTA, ℓ0 its initial location355

and ℓf a location of A. We define as FrP(A, ℓf) the set of pairs of locations s.t. ∀(ℓi, ℓj) ∈356

FrP(A, ℓf)357

ℓi = ℓ0, or ℓi ̸= ℓf and there is a clock reset on an ongoing edge to ℓi,358

ℓj = ℓf , or there is a clock reset on an ongoing edge to ℓj.359

For each pair of states (ℓi, ℓj) as defined above, we build a reset-free PTA. If the target360

state ℓj is not final (which is a special case), the reset-free PTA models every path going361

from ℓi to ℓj and that ends with a reset on its last step. In particular, this ensures that ℓj is362

reached with clock valuation 0.363

▶ Definition 22 (Reset-free PTA A(ℓi, ℓj)). Let A be a 1-clock PTA, x its unique clock, and364

ℓi, ℓj two locations in A. We define as A(ℓi, ℓj) the reset-free PTA obtained from a copy365

of A by:366

1. creating a duplicate ℓ′
j of ℓj;367

2. for all incoming edges (ℓ, g, a, R, ℓj) where R ∈ ∅, removing (ℓ, g, a, R, ℓj) and adding an368

incoming edge (ℓ, g, a, R, ℓ′
j);369

3. if ℓj ̸= ℓf , then for all outgoing edges (ℓj , g, a, R, ℓ), removing (ℓj , g, a, R, ℓ) and adding370

an outgoing edge (ℓ′
j , g, a, R, ℓ),371

else, making ℓ′
j urgent and adding an edge (ℓ′

j , True, ϵ, ∅, ℓj);372

4. removing any upper bound invariant on ℓj and making it urgent;373

5. if ℓi ̸= ℓj, setting ℓi as the initial location,374

else, setting ℓ′
j as the initial location;375

6. removing any clock reset on incoming edges to ℓj and pruning all other edges featuring a376

clock reset, and all outgoing edges from ℓf ;377

7. adding a parameter d, and a guard x = d to all incoming edges to ℓj;378

We will show next how the reachability synthesis of those reset-free PTAs corresponds to379

fragments of the runs that are considered in PET (A). The following two proposition will be380

needed for that demonstration. For simplification, given A a 1-clock PTA, and ℓi, ℓj two381

locations of A, we now note Zℓi,ℓj = EFsynth(A(ℓi, ℓj), {ℓj}).382

▶ Proposition 23. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj ̸= ℓf . Then383

Zℓi,ℓj
is equivalent to the synthesis of parameter valuations v and execution times Dv such384

that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is never reached,385

and x is reset on the last edge of ρ and on this edge only }.386

Proof. See Appendix B.4. ◀387
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▶ Proposition 24. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj = ℓf . Then388

Zℓi,ℓj
is equivalent to the synthesis of parameter valuations v and execution times Dv such389

that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is reached only390

on the last state of ρ, and x may only be reset on the last edge of ρ }.391

Proof. See Appendix B.5. ◀392

4.1.2 Reconstruction of PET from the reachability synthesis of the393

reset-free PTAs.394

Given A a 1-clock PTA, and ℓf a location of A, for all (ℓi, ℓj) ∈ FrP(A, ℓf) we may compute395

the parametric zone Zℓi,ℓj with guarantee of termination, since the reachability synthesis is396

decidable on 1-clock PTAs. Those parametric zones may be used to build the (potentially397

infinite) PET of A. To do so, we first define a (non-parametric, untimed) finite automaton398

where the states are the locations of A, and the arc between the states ℓi and ℓj is labeled399

by Zℓi,ℓj . We refer to this automaton as the automaton of the zones of A.400

▶ Definition 25 (Automaton of the zones). Let A be a 1-clock PTA, ℓ0 its initial location401

and ℓf a location of A. We define as Â the finite automaton such that:402

The states of Â are exactly the locations of A;403

ℓ0 is initial and ℓf is final;404

∀(ℓi, ℓj) ∈ FrP(A, ℓf), there is a transition from ℓi to ℓj labelled by Zℓi,ℓj
.405

We claim that the language L̂ of Â is a representation of the times (along with parameter406

constraints) to go from ℓ0 to ℓf in A. As Â is a finite automaton, L̂ can be represented as a407

regular expression with three operators: the concatenation (.), the alteration (+), and the408

Kleene star (∗). PET (A) can thus be expressed by redefining those operators with operations409

on the parametric zones that label edges of L̂.410

Any parametric zone Za,b labeling an edge of Â is of the form
⋃

i Ci with 1 ≤ i ≤ n411

and Ci a convex polyhedra. As per Definition 6, Ci is a conjunction of inequalities, each of412

the form αd +
∑

1≤i≤M βipi + γ ▷◁ 0, with pi ∈ P, and α, βi, γ ∈ Z. Note that x has been413

replaced by execution times d, as per Definition 11. In the following, we note by Cd
i all414

inequalities such that α ̸= 0 (i.e., inequalities over d and possibly some parameters in P),415

and by CP
i all inequalities such that α = 0 (i.e., inequalities strictly over P). This means416

that Ci = Cd
i ∩CP

i . For simplification of what follows, we write inequalities in Cd
i as d ▷◁ c417

where c =
∑

1≤i≤M
βipi+γ

−α .418

Given Za,b =
⋃

i Ci and Zc,d =
⋃

j Cj , we define the operators .̄, ∗̄ and +̄ .419

Operator .̄ is the addition of the time durations and intersection of parameter constraints420

between two parametric zones. Formally, Za,b .̄ Zc,d =
⋃

i∗j Cd
i,j ∩CP

i,j such that CP
i,j =421

CP
i ∩CP

j , and for all d ▷◁ ci ∈ Cd
i and d ▷◁′ cj ∈ Cd

j , if ▷◁, ▷◁′ ∈ {<,≤, =} or ▷◁, ▷◁′ ∈ {>,≥, =},422

then d ▷◁′′ ci + cj ∈ Cd
i,j with ▷◁′′ being in the same direction as ▷◁ and ▷◁′ and is423

a strict inequality if either ▷◁ or ▷◁′ is a strict inequality;424

a strict equality if both ▷◁ and ▷◁′ are strict equalities;425

a non-strict inequality otherwise.426

Operator ∗̄ is the recursive application of .̄ on a parametric zone. Formally, Za,b
∗̄ =427 ⋃

K∈N {d = 0}(̄.Za,b)K where (̄.Za,b) is repeated K times, with K being any value in N. Note428

that {d = 0} corresponds to the case where the loop is never taken, and that it is neutral for429
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the .̄ operator: {d = 0}̄.Za,b = Za,b. Also note that, in practice, a = b whenever we use this430

operator.431

Operator +̄ is the union of two parametric zones. Formally, Za,b+̄Zc,d = Za,b ∪ Zc,d.432

Note that the result of any of those operations is a union of convex polyhedra of the form433 ⋃
i Ci, meaning that these operators can be nested. Also, this union is infinite whenever434

operator ∗̄ is present.435

▶ Proposition 26. Let A be a 1-clock PTA and ℓf a location of A. Let L̂ be the language436

of the automaton of the zones Â, and e a regular expression describing L̂. Let ē be the437

expression obtained by replacing the ., + and ∗ operators in e respectively by .̄, +̄ and ∗̄. We438

have ē = PET (A).439

Proof. See Appendix B.6. ◀440

4.2 Solving the FOE problem through a translation of PET to parametric441

Presburger arithmetic442

Presburger arithmetic is the first order theory of the integers with addition. It is a useful443

tool that can represent and manipulate sets of integers called semi-linear sets. Those sets are444

particularly meaningful to study TAs, as the set of durations of runs reaching the final location445

can be described by a semi-linear set [11]. Presburger arithmetic is however not expressive446

enough to represent durations of runs in PTAs due to the presence of parameters. In [22], a447

parametric extension of Presburger arithmetic was considered, introducing linear parametric448

semi-linear sets (LpSl sets) which are functions associating to a parameter valuation v a449

(traditional) semi-linear set of the following form:450

S(v) =
{

x ∈ Nm |
∨
i∈I

∃x0, . . . xni
∈ Nm,k1, . . . kni

∈ N, x =
ni∑

j=0
xj451

∧bi
0(v) ≤ x0 ≤ci

0(v) ∧
ni∧

j=1
kjbi

j(v) ≤ xj ≤ kjci
j(v)

}
(1)452

453

where I is a finite set and the bi
j and ci

j are linear polynomials with coefficients in N. A 1-LpSl454

set is an LpSl set defined over a single parameter. Given two LpSl (resp. 1-LpSl) sets S1455

and S2, the LpSl (resp. 1-LpSl) equality problem consists in deciding whether there exists a456

parameter valuation v such that S1(v) = S2(v).457

▶ Theorem 27 ([22]). The LpSl equality problem is undecidable.458

The 1-LpSl equality problem is decidable. Moreover, the set of valuations achieving459

equality can be computed.460

The main goal of this subsection is to relate the expressions computed in Section 4.1 to461

LpSl sets in order to tackle ET-opacity problems. Since Presburger arithmetic is a theory of462

integers, we have to restrict PTAs to integer parameters; this is what prevents our results463

to be extended to rational-valued parameters in a straightforward manner. Moreover, we464

need to focus on time durations of runs with integer values. This second restriction however465

is without loss of generality. Indeed, in [6, Theorem 5], a trick is provided (which consists466

mainly in doubling every term of the system so that any run duration that used to be a467

rational of the form q
2 is now an integer to ensure that if a set is non-empty, it contains an468

integer. This transformation also allows one to consider only non-strict constraints, and thus469

we assume every constraint is non-strict in the following.470
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▶ Theorem 28. The LpSl equality problem reduces to the FOE problem for (1, 0, ∗)-PTAs.471

Moreover, the FOE problem for (1, 0, 1)-PTAs reduces to the 1-LpSl equality problem.472

Sketch of proof. From Equation (1) one can see that an LpSl set parametrically defines473

integers that are the sum of two types of elements: x0 belongs to an interval, while the xj474

represent a sum of integers, each coming from the interval [bi
j ; ci

j ]. Intuitively, we separate a475

run into its elementary path until the final state and its loops. We use x0 to represent the476

duration of the elementary path, and the xj adds the duration of loops. Each occurrence of477

the same loop within a run being independent (as they include a reset of the clock), their478

durations all belong to the same interval.479

Formally, given a PTAA, using Section 3.2, we build the PTAsAℓpriv
ℓf

andA¬ℓpriv
ℓf

separating480

the private and public runs of A. Then with Section 4.1, we obtain expressions ēℓpriv and481

ē¬ℓpriv such that (Proposition 26) ēℓpriv = PET(Aℓpriv
ℓf

) and ē¬ℓpriv = PET(A¬ℓpriv
ℓf

). We then482

develop and simplify these expressions until we can build LpSl sets representing the integers483

accepted by each expression. We can then show the inter-reduction as the full ET-opacity is484

directly equivalent to the equality of the two sets. Note that one direction of the reduction is485

stronger, allowing multiple parameters. This is due to constraints over the parameters which486

may appear in our expressions, but cannot be transferred to LpSl sets. However, when there487

is a single parameter, one can easily resolve these constraints beforehand. ◀488

Combining Theorems 27 and 28 directly gives us:489

▶ Corollary 29. FOE is undecidable for (1, 0, ∗)-PTAs.490

▶ Corollary 30. FOE is decidable for (1, 0, 1)-PTAs and FOS can be solved.491

5 Decidability of ∃OE for (1, 0, ∗)-PTAs for integer-valued parameters492

We prove here the decidability of ∃OE for (1, 0, ∗)-PTAs with integer parameters over dense493

time (Section 5.1); we also prove that the same problem is in EXPSPACE for (1, ∗, 1)-PTAs494

over discrete time (Section 5.2).495

5.1 General case496

Adding the divisibility predicate (denoted “|”) to Presburger arithmetic produces an unde-497

cidable theory, whose purely existential fragment is known to be decidable [21]. The FOE498

problem can be encoded in this logic, but requires a single quantifier alternation, which goes499

beyond the aforementioned decidability result, leading us to rely on [22]. The ∃OE problem500

however can be encoded in the purely existential fragment.501

▶ Theorem 31. The ∃OE problem is decidable.502

Sketch of proof. As for Theorem 28, we start by building and simplifying expressions503

representing the private and public durations of the PTA. Instead of translating the expression504

into LpSl set however, we now use Presburger with divisibility.505

Again, a run can be decomposed in the run without loop and its loops. The duration506

of the former is defined directly by conjunction of inequalities, which can be formulated in507

a Presburger arithmetic formula. The latter requires the divisibility operator to represent508

the arbitrary number of loops. Hence, we can build a formula accepting exactly the integers509

satisfying our expressions. Deciding the ∃OE problem can be achieved by testing the existence510

of an integer satisfying the formulas produced from both expression, which can be stated in511

a purely existential formula. ◀512
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Table 1 Execution-time opacity problems for PTAs: contributions and some open cases

Time (pc, npc, p) ∃OE emptiness ∃OE synthesis
dense (1, 0, ∗)

√
(Th. 31) ?

dense (1, ∗, ∗) ? ?
dense (2, 0, 1) ? ?
dense (3, 0, 1) × ([7, Th.6.1]) ×

discrete (1, ∗, 1)
√

EXPSPACE (Th. 33) ?

Time (pc, npc, p) FOE emptiness FOE synthesis
dense (1, 0, 1)

√
Corol. 30

√
Corol. 30

dense (1, 0, [2, M)) ? ?
dense (1, 0, M) × (Corol. 29) ×
dense ([2, 3], 0, 1) ? ?
dense (4, 0, 2) × ([7, Th. 7.1]) ×

▶ Remark 32 (complexity). Let us quickly discuss the complexity of this algorithm. The513

expressions produced by Proposition 26 can, in the worst case, be exponential in the size514

of the PTA. This formula was then simplified within the proof of Theorem 28, in part by515

developing it, which could lead to an exponential blow-up. Finally, the existential fragment516

of Presburger arithmetic with divisibility can be solved in NEXPTIME [21]. As a consequence,517

our algorithm lies in 3NEXPTIME.518

5.2 Discrete time case519

There are clear ways to improve the complexity of this algorithm. In particular, we finally520

prove an alternative version of Theorem 31 in a more restricted setting (T = N), but with a521

significantly lower complexity upper bound and using completely different proof ingredients.522

▶ Theorem 33. ∃OE is decidable in EXPSPACE for (1, ∗, 1)-PTAs over discrete time.523

▶ Remark 34. The fact that we can handle arbitrarily many non-parametric clocks in524

Theorem 33 does not improve Theorem 31: over discrete time, it is well-known that non-525

parametric clocks can be eliminated using a technique from [2], and hence come “for free”.526

6 Conclusion and perspectives527

In this paper, we addressed the ET-opacity for 1-clock PTAs with integer-valued parameters528

over dense time. We proved that 1) FOE is undecidable for a sufficiently large number of529

parameters, 2) FOE becomes decidable for a single parameter, and 3) ∃OE is decidable, in530

3NEXPTIME over dense time and in EXPSPACE over discrete time. These results rely on a531

novel construction of PET, for which a sound and complete computation method is provided.532

In the general case, we provided semi-algorithms for the computation of PET, ∃OS and FOS.533

Our PET constructions and all PET-related results work perfectly for rational-valued534

parameters. It remains however unclear how to extend our (un)decidability results to rational-535

valued parameters, as our other proof ingredients (notably using the Presburger arithmetics)536

heavily rely on integer-valued parameters.537

It remains also unclear whether synthesis can be achieved using techniques from [17],538

explaining the “open” cell in the “discrete time” row of Table 1. Also, a number of problems539

remain open in Table 1, notably the 2-clock case, already notoriously difficult for reachability540

emptiness [2, 17].541

Finally, exploring weak ET-opacity [5] is also on our agenda.542
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A Recalling the correctness of EFsynth618

▶ Lemma 35 ([20]). Let A be a PTA, and let Ltarget be a subset of the locations of A.619

Assume EFsynth(A, Ltarget) terminates with result K. Then v |= K iff Ltarget is reachable620

in v(A).621

B Proof of results622

B.1 Proof of Proposition 13623

▶ Proposition 13. Let A be a PTA, and ℓf the final location of A.624

Let A′ be a copy of A s.t.:625

a clock xabs is added and initialized at 0 (it does not occur in any guard or reset);626

a parameter d is added;627

ℓf is made urgent (i.e., time is not allowed to pass in ℓf), all outgoing edges from ℓf are628

pruned and a guard xabs = d is added to all incoming edges to ℓf .629

Then, PET (A) = EFsynth(A′, {ℓf}).630

Proof. By having ℓf being urgent and removing its outgoing edges, we ensure that the runs631

that reach ℓf in A′ are all of the form (ℓ0, µ0), (d0, e0), · · · , (ℓn, µn) for some n ∈ N such that632

ℓn = ℓ′ and ∀0 ≤ i ≤ n− 1, ℓi ̸= ℓ′. By having a clock xabs that is never reset and ℓf being633

urgent, we ensure that for any run ρ that reaches ℓf in A′, the value of xabs in the final state634

if equals to dur(ρ). By having a guard xabs = d on all incoming edges to ℓf , we ensure that635

d = dur(ρ) on any run ρ that reaches ℓf .636

Therefore, EFsynth(A′, {ℓf}) contains all parameter valuations of the runs to ℓf in A that637

stop once ℓf is reached, along with the duration of those runs contained in d. ◀638

B.2 Proof of Proposition 16639

▶ Proposition 16. Given a PTA A, we have: d-∃OS(A) = PET (Aℓpriv
ℓf

) ∩ PET (A¬ℓpriv
ℓf

).640
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Proof. By definition, d-∃OS(A) is the synthesis of parameter valuations v and execution641

times Dv such that v(A) is opaque w.r.t. ℓpriv on the way to ℓf for these execution times Dv.642

This means that d-∃OS(A) contains exactly all parameter valuations and executions times643

for which there exist both at least one run in Aℓpriv
ℓf

and at least one run in Aℓpriv
ℓf

. Since PET644

are the synthesis of the parameter valuations and execution times up to the final location,645

d-∃OS(A) is equivalent to the intersection of the PET (Aℓpriv
ℓf

) and PET (A¬ℓpriv
ℓf

). ◀646

B.3 Proof of Proposition 18647

▶ Proposition 18. Given a PTA A with parameter set P: d-FOS(A) = d-∃OS(A)\Diff (A)↓P.648

Proof. By definition, d-FOS(A) is the synthesis of parameter valuations v (and execution649

times of their runs) s.t. v(A) is fully opaque w.r.t. ℓpriv on the way to ℓf . By definition,650

Diff (A)↓P is the set of parameter valuations s.t. for any valuation v ∈ Diff (A)↓P, there651

is at least one run where ℓpriv is reached (resp. avoided) on the way to ℓf in v(A) whose652

duration time is different from those of any run where ℓpriv is avoided (resp. reached) on653

the way to ℓf in v(A). By removing this set of parameters from d-∃OS(A), we are left with654

parameter valuations (and execution times of their runs) s.t. for any v, any run ρ where ℓpriv655

is reached (resp. avoided) on the way to ℓf in v(A), there is a run ρ′ where ℓpriv is avoided656

(resp. reached) on the way to ℓf in v(A) and dur(ρ) = dur(ρ′). This is equivalent to our657

definition of full opacity. ◀658

B.4 Proof of Proposition 23659

▶ Proposition 23. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj ̸= ℓf . Then660

Zℓi,ℓj
is equivalent to the synthesis of parameter valuations v and execution times Dv such661

that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is never reached,662

and x is reset on the last edge of ρ and on this edge only }.663

Proof. Let us first consider the case where ℓi ̸= ℓj . Steps 1 to 3 in Definition 22 imply that664

whenever ℓj occurs either as a source or target location in an edge, it is replaced by the665

duplicate locality ℓ′
j , except when ℓj is the target location and x is reset on the edge. At this666

stage, for any path between ℓi and ℓj in A, where no incoming edge to ℓj featuring a clock667

reset is present, there is an equivalent path in A(ℓi, ℓj) with ℓj being replaced by ℓ′
j . Step 4668

implies that whenever ℓj is reached in A(ℓi, ℓj) no delay is allowed. As there are no outgoings669

edges from ℓj anymore, and only incoming edges featuring a clock reset, only runs ending670

with such edges are accepted by the reachability synthesis on ℓj . Since the clock value when671

entering in ℓj through such an edge is always 0, removing the upper bound of the invariant672

does not impact the availability of transitions. Because of our assumption that ℓi ≠ ℓj , Step673

5 does not change the initial location. Step 6 ensures that, in any run from ℓi to ℓj :674

no clock reset is performed before the last edge of the run;675

the clock is not reset when entering ℓj , and is therefore equals to the duration of the run;676

ℓf is not reached.677

Step 7 ensures that d is equal to the value of the clock when entering ℓf .678

Let us now consider the case where ℓi = ℓj . In this case, Step 5 changes the initial679

locality to ℓ′
j . Because of Steps 1 to 3, runs from ℓ′

j to ℓj in A(ℓi, ℓj) are identical to runs680

looping from ℓi to ℓi in A where x is reset on the last edge of the run and on this edge only.681

Restrictions obtained by Steps 4, 6 and 7 are unchanged.682
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Therefore, Zℓi,ℓj is equivalent to the synthesis of parameter valuations v and execution683

times Dv such that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is684

never reached, and x is reset on the last edge of ρ and on this edge only. ◀685

B.5 Proof of Proposition 24686

▶ Proposition 24. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj = ℓf . Then687

Zℓi,ℓj is equivalent to the synthesis of parameter valuations v and execution times Dv such688

that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is reached only689

on the last state of ρ, and x may only be reset on the last edge of ρ }.690

Proof. By Definition 21, we know that ℓi ̸= ℓf .691

Steps 1 to 3 in Definition 22 imply that:692

whenever ℓf is the target location of an edge, it is replaced by the duplicate locality ℓ′
j ,693

except when x is reset on the edge;694

once ℓ′
j is reached, no delay is allowed and the only available transition consists in reaching695

ℓf through an empty action ϵ.696

At this stage, the only difference between path from ℓi to ℓf in A(ℓi, ℓj) and A is that697

incoming edges to ℓf where x is not reset now leads to ℓ′
j , and then to ℓf without any added698

elapsed time. Step 4 implies that whenever ℓf is reached in A(ℓi, ℓj) no delay is allowed. As699

ℓf is either entered by the immediate transition from ℓ′
j or feature a clock reset, removing700

the upper bound of the invariant does not impact the availability of transitions. As ℓi ≠ ℓf ,701

Step 5 does not change the initial location. Step 6 ensures that, in any run from ℓi to ℓj :702

no clock reset is performed before the last edge of the run (not counting the ϵ edge from703

ℓ′
j to ℓf);704

the clock value is not reset when entering ℓf , and is therefore equals to the duration of705

the run;706

no action can be taken after reaching ℓf .707

Step 7 ensures that d is equal to the value of the clock when entering ℓf .708

Therefore, Zℓi,ℓj is equivalent to the synthesis of parameter valuations v and execution709

times Dv such that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is710

reached only on the last state of ρ, and x may only be reset on the last edge of ρ.711

◀712

B.6 Proof of Proposition 26713

▶ Proposition 26. Let A be a 1-clock PTA and ℓf a location of A. Let L̂ be the language714

of the automaton of the zones Â, and e a regular expression describing L̂. Let ē be the715

expression obtained by replacing the ., + and ∗ operators in e respectively by .̄, +̄ and ∗̄. We716

have ē = PET (A).717

Proof. Let us first show that ē contains PET (A). Let ρ be a path whose time duration and718

parameter constraints are in PET (A). By definition, ρ starts at time 0 in the initial locality719

and ends in ℓf , with only one occurrence of ℓf in the whole path. Let us consider that the720

clock is reset n times before the last transition, then ρ can be decomposed as ρ0 . . . ρn such721

that:722

∀ 0 ≤ i < n, sub-path ρi starts in ℓi at time valuation 0, ends in ℓi+1, contains a single723

reset positioned on the last transition (thus ending with time valuation 0) and does not724

contain any occurrence of ℓf ;725
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sub-path ρn starts in ℓn at time valuation 0, ends in ℓf , may only contain a reset on its726

last transition, and contains exactly one occurrence of ℓf .727

By Definition 21, ∀ 0 ≤ i < n, (ℓi, ℓi+1) ∈ FrP(A, ℓf) and by Proposition 23, Zℓi,ℓi+1 is728

the synthesis of parameter valuations and execution times of that sub-path. By Defini-729

tion 21, (ℓn, ℓf) ∈ FrP(A, ℓf) and by Proposition 24, Zℓn,ℓf is the synthesis of parameter730

and valuation times of that sub-path. By Definition 25, there is a sequence of transitions731

Zℓ0,ℓ1 , . . . , Zℓi,ℓi+1 , . . . , Zℓn,ℓf in the automaton of the zones Â. By application of operators732

+̄ and ∗̄, that sequence thus exists in ē as Zℓ0,ℓ1 .̄ . . . .̄Zℓi,ℓi+1 .̄ . . . .̄Zℓn,ℓf . By definition of733

operator .̄, this expression is the intersection of all parameter constraints and the addition of734

all valuation times, which is equivalent to PET (A).735

Let us now show that PET(A) contains ē. By application of operators +̄ and ∗̄, any736

word in ē can be expressed as a sequence of concatenation operations .̄. By Definition 25,737

given a word Zℓ0,ℓ1 .̄ . . . .̄Zℓi,ℓi+1 .̄ . . . .̄Zℓn,ℓn+1 ∈ ē, we know that ℓ0 is the initial location of A,738

ℓn+1 = ℓf and ∀ 0 ≤ i ≤ n, ℓi ≠ ℓf . By Proposition 23, ∀ 0 ≤ i < n, Zℓi,ℓi+1 is the synthesis739

of parameter valuations and execution times of paths between ℓi and ℓi+1 in A such that ℓf740

is never reached, and x is reset on the last edge of the path and on this edge only. And by741

Proposition 24, Zℓn,ℓf is the synthesis of parameter valuations and execution times of paths742

between ℓn and ℓf in A such that ℓf is reached only on the last state of ρ, and x may only be743

reset on the last edge of ρ.744

Let us assume there exists a path ρ whose time duration and parameter constraints are745

in PET (A) such that ρ = ρ0 . . . ρn and:746

∀ 0 ≤ i < n, sub-path ρi starts in ℓi at time valuation 0, ends in ℓi+1, contains a single747

reset positioned on the last transition (thus ending with time valuation 0) and does not748

contain any occurrence of ℓf ;749

sub-path ρn starts in ℓn at time valuation 0, ends in ℓf , may only contain a reset on its750

last transition, and contains exactly one occurrence of ℓf .751

Then Zℓ0,ℓ1 .̄ . . . .̄Zℓi,ℓi+1 .̄ . . . .̄Zℓn,ℓn+1 ∈ PET (A). On the other hand, if there does not exists752

such a path, then there exist 0 ≤ i ≤ n such that Zℓi,ℓi+1 = ∅. By recursive applications of753

operator .̄, the whole sequence is evaluated as ∅ and thus contained in PET (A).754

◀755

B.7 Proof of Theorem 28756

▶ Theorem 28. The LpSl equality problem reduces to the FOE problem for (1, 0, ∗)-PTAs.757

Moreover, the FOE problem for (1, 0, 1)-PTAs reduces to the 1-LpSl equality problem.758

Proof. Given a PTA A, we showed in Section 3.2 how to compute two PTAs Aℓpriv
ℓf

and759

A¬ℓpriv
ℓf

separating the private and public runs of A. Then in Section 4.1, we showed how760

to build expressions ēℓpriv and ē¬ℓpriv such that (Proposition 26) ēℓpriv = PET(Aℓpriv
ℓf

) and761

ē¬ℓpriv = PET (A¬ℓpriv
ℓf

).762

Remark that the operators .̄, ∗̄ and +̄ are associative and commutative; moreover, each763

term Z occurring in the expressions ēℓpriv and ē¬ℓpriv is a union of constraints Z =
⋃

i′ Ci′ =764

+̄i′Ci′ . As a consequence, we can thus develop the entire expression to the form765

+̄i (Ci
1̄.Ci

2̄. · · · .̄Ci
ni

)̄.(Ci
ni+1)∗̄ .̄(Ci

ni+2)∗̄ .̄ · · · .̄(Ci
ni+mi

)∗̄.766

where we put all +̄ outside of the expression. For example, the expression Z1̄.(Z2)∗̄ where767

Z1 = C1 ∪C2 and Z2 = C3 ∪C4 is developed into C1̄.(C3)∗̄ .̄(C4)∗̄+̄C2̄.(C3)∗̄ .̄(C4)∗̄.768
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As C∗̄ = {d = 0}+̄C.̄C∗̄, for each Ci
ni+j we can w.l.o.g. express term i as the union of two769

terms: one where (Ci
ni+j)∗̄ is removed (i.e., this loop is never taken), and one where Ci

ni+j770

is concatenated to the term (i.e., the loop is taken at least once). This means that each term,771

is turned into 2mi terms, where we can assume w.l.o.g. that for each j > 0, Ci
ni+j = Ci

j .772

Given an expression of the above form, by definition of .̄, the product Ci
1̄.Ci

2̄. · · · .̄Ci
ni

is773

also a conjunction of inequalities and thus can be expressed as Cd
i ∩CP

i where CP
i is obtained774

by the constraints that do not involve d while Cd
i contains the constraints that involve d775

and potentially some parameters in P. Note also that by the assumption that for each j > 0,776

Ci
ni+j = Ci

j , any constraint that does not involve d can be removed from Ci
ni+j without777

modifying the set. Therefore, the expression can now be rewritten as778

+̄i(Cd
i ∩CP

i )̄.(Ci
1)∗̄ .̄(Ci

2)∗̄ .̄ · · · .̄(Ci
mi

)∗̄.779

where every inequality in Ci
j involves d.780

Assume the expressions involve a single parameter p. Let us show that the FOE problem781

for PTAs over a single parameter reduces to the 1-LpSl equality problem.782

Every constraint on p is of the form p ▷◁ c with c ∈ N and ▷◁ ∈ {≤,≥}. Therefore, there783

exists a constant M such that for all i, either the constraint CP
i is satisfied for all p ≥M ,784

or it is satisfied by none.785

For any fixed valuation v, full ET-opacity of v(A) is decidable by [5]. We thus assume that786

we consider only valuations of p greater than M . This can be represented by replacing787

every occurrence of p in the expressions by M + p. This can be done without loss of788

generality as we can independently test whether the PTA is fully ET-opaque for the789

finitely many integer values of p smaller than M . When solving the FOS problem, we790

thus need to include the valuations of p smaller than M that achieved equality to the791

valuations provided by the reduction.792

The terms CP
i being either always or never valid, one can either remove this constraint793

from the expression, or the term containing it producing an expression of the form794

+̄iCi
0̄.(Ci

1)∗̄ .̄(Ci
2)∗̄ .̄ · · · .̄(Ci

mi
)∗̄.795

where every constraint involves x.796

Once again, assuming p is large enough, the constraint Ci
j can be assumed to be of the797

form αi
jp + βi

j ≤ x ≤ γi
jp + δi

j where αi
j , βi

j , γi
j , δi

j ∈ N.798

For both expressions ēℓpriv and ē¬ℓpriv , now in the simplified form described above, we799

build the 1-LpSl sets Sēℓpriv
and Sē¬ℓpriv

where, taking the notations from Equation (1), I800

is the set +̄ ranges over, for 0 ≤ j ≤ mi, bi
j = αi

jp + βi
j and ci

j = γi
jp + δi

j .801

For a valuation v of p, we have that Sēℓpriv
(v) contains exactly the integers that satisfy802

v(ēℓpriv ) (and similarly for Sē¬ℓpriv
(v) and v(ē¬ℓpriv )). Therefore, there exists a valuation803

such that A if fully opaque w.r.t. ℓpriv on the way to ℓf iff there exists a parameter804

valuation v such that Sēℓpriv
(v) = Sē¬ℓpriv

(v), establishing the reduction.805

We now wish to show that the LpSl equality problem reduces to the FOE problem.806

To do so, we fix two LpSl sets S1 and S2, we will build two automata A1 and A2 such807

that, for i ∈ {1, 2}, similarly to the previous reduction, we have that for all valuation v,808

Si(v) contains exactly the integers that satisfy v(PET (Ai)).809

Let us focus on S1 and assume it is of the form given by Equation (1). We build A1 so810

that from the initial location ℓ0 it can take multiple transitions (one for each i ∈ I), the811
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ith transition being allowed if the clock lies between bi
0 and ci

0, reset the clock and reach812

a state ℓi. From ℓi, there are ni loops, and the jth loop can be taken if the clock lies813

between bi
j and ci

j and resets the clock. Moreover, a transition can be taken from ℓi to ℓf814

if x = 0.815

Formally, A1 = (Σ, L, ℓ0,X,P, I, E) where Σ = {ϵ}, L = {ℓ0, ℓf} ∪ {ℓi | i ∈ I}, X = {x},816

P is the set of parameters appearing in S1, I does not restrict the PTA (i.e., it associates817

R≥0 to every location), and finally818

E =
{

(ℓ0, (bi
0 ≤ x ≤ ci

0), ϵ, {x}, ℓi | i ∈ I
}

819

∪
{

(ℓi, (bi
j ≤ x ≤ ci

j), ϵ, {x}, ℓi | i ∈ I, 1 ≤ j ≤ ni

}
820

∪
{

(ℓi, (x = 0), ϵ, ∅, ℓf | i ∈ I
}

.821

822
823

Thus, a run reaching ℓf can be decomposed into final-reset paths. In other words, there824

is a run reaching ℓf with duration d iff d can be written as a sum d =
∑ni

j=0 dj where825

bi
0 ≤ d0 ≤ ci

0 and for all j > 0, kjbi
j ≤ dj ≤ kjci

j where kj is the number of times the jth826

loop is taken in the PTA. As a consequence, the set of durations of runs reaching ℓf is827

exactly S1.828

We build A2 similarly. We now build the PTA A which can either immediately (with829

x = 0) go to the initial state of A1 or go immediately to a private location ℓpriv before830

immediately reaching the initial state of A2. The final location of A1 and A2 are then831

fused in a single location ℓf . We thus have that, the set of runs reaching ℓpriv on the way832

to ℓf are exactly the ones reaching ℓf in A2 (with a prefix of duration 0). And similarly,833

the set of runs avoiding ℓpriv on the way to ℓf are exactly the ones reaching ℓf in A1834

(with a prefix of duration 0). Therefore, for any parameter valuation v, we have that835

DVisitpriv(v(A)) = DVisitpriv(v(A)) iff S1(v) = S2(v), concluding the reduction.836

◀837

B.8 Proof of Theorem 31838

▶ Theorem 31. The ∃OE problem is decidable.839

Proof. Within the proof of Theorem 28, we considered two expressions ēℓpriv and ē¬ℓpriv such840

that (Proposition 26) ēℓpriv = PET (Aℓpriv
ℓf

) and ē¬ℓpriv = PET (A¬ℓpriv
ℓf

). Those two expressions841

were simplified into terms of the form842

+̄i(Cd
i ∩CP

i )̄.(Ci
1)∗̄ .̄(Ci

2)∗̄ .̄ · · · .̄(Ci
mi

)∗̄.843

where every inequality in Ci
j involves d.844

Assume ēℓpriv is of the above form, and that for all i, j with j ≤ mi, CP
i =

∧
k Ii,−1,k,845

Cx
i =

∧
k Ii,0,k, Ci

j =
∧

k Ii,j,k where each Ii,r,k is a linear inequality over P and d.846
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We build the formula with free variables d, p1, . . . , pM ,847

ϕℓpriv =
∨

i

∃x0, . . . xmi
, d =

mi∑
k=1

xi848

∧
∧
k

Ii,−1,k(p1, . . . , pM )849

∧
∧
k

Ii,0,k(x0, p1, . . . , pM )850

∧
∧
j

∃y1, y2, y3, z1, z2(
∧

m∈{1,2,3}

∧
k

Ii,j,k(ym, p1, . . . , pM ))851

∧ (z1 = 0 ∨ y1 | z1) ∧ (z2 = 0 ∨ y2 | z2) ∧ xj = z1 + z2 + y3.852
853

For fixed values of the variables p1, . . . , pM , the set of variables x satisfying ϕℓpriv is exactly854

the set of integers contained in ēℓpriv for parameter valuations p1, . . . , pm.855

Indeed, let us fix one value of i; by definition, the conjunction of constraint856 ∧
k Ii,−1,k(p1, . . . , pM ) constrains the variables p1, . . . , pM as CP

i does to the parameter857

valuations. Moreover, by definition of .̄, the concatenation of the other constraints accepts858

the values that can be obtained as a sum of elements produced by each constraint. This is859

the role played by the variables xi in the formulas.860

The main point to show is that for j ≥ 1, the variable xj takes exactly the values accepted861

by (Ci
j)∗̄. Remember that (Ci

j)∗̄ accepts every number obtained as a sum of terms accepted862

by Ci
j .863

First, by definition, y1, y2 and y3 all satisfy Ci
j . Thus, z1 and z2, being integer multiple864

of y1 and y2, satisfy (Ci
j)∗̄. Hence, any possible value of xj belongs to (Ci

j)∗̄.865

Reciprocally, let n ∈ N accepted by (Ci
j)∗̄. There thus exist n1, . . . , nk such that for all r,866

nr satisfies Ci
j and n =

∑k
r=1 nr. Assume n1 ≤ n2 ≤ · · · ≤ nr. By convexity of the set867

described by Ci
j , every integer between n1 and nr satisfies the constraint. Thus, we can868

assume w.l.o.g. that at most one number ns has a value strictly between n1 and nr (if two869

such numbers a and b exist, one can replace them by a + 1 and b− 1 to bring them closer to870

n1 and nr, and by repeating this process, at most one remains). There thus exist v1, vr ∈ N871

and v ∈ [n1; nr] such that n = v1n1 + vrnr + v. By setting y1 = n1, y2 = nr, z1 = v1n1,872

z2 = vrnr and y3 = v, the variable xj takes the value n.2873

We build ϕℓpub from ēℓpub in the same way. Asking whether there exist parameter valuations874

p1, . . . , pM such that an integer d ∈ N appears in both ēℓpub and ēℓpub is thus equivalent to875

verifying the truth of the formula876

∃p1, . . . , pM , d, ϕℓpub(d, p1, . . . , pM ) ∧ ϕℓpriv (d, p1, . . . , pM ).877

As this formula belongs to the existential fragment of Presburger arithmetic with divisibility,878

its veracity is decidable, and thus ∃OE is decidable.879

◀880

B.9 Proof of Theorem 33881

▶ Theorem 33. ∃OE is decidable in EXPSPACE for (1, ∗, 1)-PTAs over discrete time.882

2 The formula allows for z1 = 0 and z2 = 0, so that if n satisfies Ci
j , we can set z1 = z2 = 0 and y3 = n.
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Proof. In [7, Section 8], we gave a semi-algorithm to answer the ∃OS problem in (1, ∗, 1)-883

PTAs, working as follows. We build the parallel composition of two occurrences of the884

input PTA and, adding an absolute time clock, we force simultaneous reachability of the885

final location such that one PTA visited ℓpriv while the other did not. This can be reused886

here, by replacing the absolute time clock with a synchronized action between both PTAs887

(knowing the actual execution time is not necessary here, as we aim at solving ∃OE—not ∃OS).888

Assuming A is a (1, ∗, 1)-PTA, let A′ denote this resulting PTA. Now, from our construction,889

∃OE holds iff the final location of A′ is reachable for at least one parameter valuation.890

Note that, while the (unique) parametric clock of the PTA must be duplicated in A′, the891

(unique) parameter is not duplicated, as it is the same in both versions of the PTA, and892

therefore A′ contains a single parameter. That is, A′ is a (2, ∗, 1)-PTA.893

Finally, reachability emptiness is EXPSPACE-complete in (2, ∗, 1)-PTA over discrete894

time [17], and therefore the ∃OE problem for (1, ∗, 1)-PTAs over discrete time can be solved895

in EXPSPACE. ◀896
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