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Abstract6

We consider the control of the information released by a system represented by a stochastic7

model. In this framework, an external observer is interested in detecting a particular set of relevant8

paths of the system. However, he can only observe those paths trough an observation function which9

obfuscates the real behaviour of the system. Exact disclosure occurs when the observer can deduce10

from a finite observation that the path is relevant, the approximate disclosure variant corresponding11

to the path being identified as relevant with arbitrarily high accuracy. We consider the problems of12

diagnosability and opacity, which corresponds, in spirit, to the cases where one wants to disclose all13

the information or hide as much of it as possible. While these problems have already been studied for14

the exact disclosure notion, there are very few works considering the approximate disclosure. Under15

the approximate notion of disclosure, we establish that opacity of Markov chains is in EXPTIME16

and PSPACE-hard. Moreover, we show that diagnosability is EXPTIME-complete for controllable17

systems while nearly every opacity question is undecidable in an active setting.18
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1 Introduction23

Diagnosis and Opacity24

Due to the omnipresence of communicating devices, controlling the information produced by25

a system has seen an increasing importance. This control mainly takes two directions. First,26

it can be done in order to detect some internal behaviour, such as malfunctions, of the system.27

In control theory, this direction has been formalised under the name diagnosis and studied28

on systems modelled by partially observable labelled transition systems (POLTS) [25]. In29

such a framework, diagnosability requires that the occurrence of unobservable faults can30

be deduced accurately from the previous and subsequent observable events. Diagnosability31

for POLTS was shown to be decidable in PTIME [19]. Also, several contributions, gathered32

under the generic name of active diagnosis, focus on enforcing the diagnosability of a33

system [24, 27, 14, 15]. The second direction of information control aims at hiding a secret34

behaviour of the system. This property, called opacity, is motivated by security: an external35

user should not, by observing an execution of a system, acquire the guarantee that it is a36

secret one. This property was formalised for POLTS [13] by specifying a subset of secret paths37

and requiring that, for any secret path, there is a non-secret one with the same observation.38

Both diagnosability and opacity thus consider a set of relevant paths. The disclosure set of a39

system is then the set of relevant paths that can be identified as such.40

Information control of stochastic systems41

In stochastic systems, one can use the probabilities to refine the analysis of the disclosure42

set. First, probabilities allow to quantify the importance of the leak of information. In43
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this endeavour, various measures for the disclosure set, called probabilistic disclosure, were44

introduced [23, 1, 5, 3]. Secondly, in stochastic systems, the ability to identify a path as45

relevant can be chosen to depend on the probabilities. There are three natural variants: (1)46

exact disclosure, which, as in the non-stochastic case, require that no non-relevant path share47

the same observation, (2) ε-disclosure for ε > 0 which tolerates small errors, allowing to claim48

the relevance of a path if the conditional probability that the path is relevant exceeds 1− ε,49

and (3) Accurate Approximate disclosure (AA-disclosure) which is satisfied when the accuracy50

of the guess can be chosen arbitrarily high. Under the exact notion of disclosure, both51

diagnosability and opacity have been studied extensively for stochastic systems [7, 6, 26, 2, 4].52

In particular, various exact notions of diagnosability have been shown to be PSPACE-complete53

for observable Markov chains (oMC). The study of the approximate notions of disclosure54

has however been more limited, especially for the notion of AA-disclosure. The most notable55

result showed that diagnosability under AA-disclosure is decidable in PTIME [8] for oMC.56

Contribution57

In this paper, we study diagnosability and opacity in stochastic systems under AA-disclosure.58

we formally introduce a notion of accurate approximate opacity that mirrors the existing59

diagnosability notion (Definition 7);60

we show that opacity with AA-disclosure for oMC is PSPACE-complete (Theorem 11);61

we establish that diagnosability with AA-disclosure for weighted Markov chains, a con-62

trollable setting, is EXPTIME-complete (Theorem 17);63

we prove the undecidability of most notions of opacity under AA-disclosure for observable64

Markov decision processes (Theorem 26 and 28).65

Organisation66

In Section 2, we define and discuss the notions of disclosure, diagnosability as well as opacity.67

We also gather and complete the results on approximate diagnosability and opacity in a68

passive framework. Then, in Section 3, we consider diagnosability for weighted Markov69

chains, a framework giving a partial external control on the system. Similarly, in Section 4,70

we study opacity for observable Markov decision processes, a setting where the control is71

more powerful than the one in weighted Markov chains due to being internal to the system.72

For space concerns, the most technical proofs are deferred to the appendix.73

2 Diagnosis and Opacity for Markov Chains74

2.1 Observable Markov Chains75

For a finite alphabet Σ, we denote by Σ∗ (resp. Σω) the set of finite (resp. infinite) words76

over Σ, Σ∞ = Σ∗ ∪ Σω and ε the empty word. The length of a word w is denoted by77

|w| ∈ N ∪ {∞} and for n ∈ N, Σn is the set of words of length n. A word u ∈ Σ∗ is a78

prefix of v ∈ Σ∞, written u ≤ v, if v = uw for some w ∈ Σ∞. The prefix is strict if w 6= ε.79

For n ≤ |w|, we write w↓n for the prefix of length n of w. Given a countable set S, a80

distribution on S is a mapping µ : S → [0, 1] such that
∑
s∈S µ(s) = 1. The support of µ is81

Supp(µ) = {s ∈ S | µ(s) > 0}. If Supp(µ) = {s} is a single element, µ is a Dirac distribution82

on s written 1s. We denote by Dist(S) the set of distributions on S.83

For the purpose of information control questions, the model must be equipped with an84

observation function describing what an external observer can see. The observation function85
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can be obtained via a labelling of states or transitions, both options being known to be86

equivalent. We thus define observable Markov chains (see Figure 1).87

I Definition 1 (Observable Markov chains). An observable Markov chain (oMC) over alphabet88

Σ is a tuple M = (S, p,O) where S is a countable set of states, p : S → Dist(S) is the89

transition function, and O : S → Σ is the observation function.90

We write p(s′|s) instead of p(s)(s′) to emphasise the probability of going to state s′91

conditioned by being in state s. Given a distribution µ0 ∈ Dist(S), we denote byM(µ0) the92

oMC with initial distribution µ0. For decidability and complexity results, we assume that93

all probabilities occurring in the model (transition probabilities and initial distribution) are94

rationals. A (finite or infinite) path ofM(µ0) is a sequence of states ρ = s0s1 . . . ∈ S∞ such95

that µ0(s0) > 0 and for each i ≥ 0, p(si+1|si) > 0. For a finite path, ρ = s0s1 . . . sn, we call96

n its length and denote its ending state by last(ρ) = sn. A finite path ρ1 prefixes a finite or97

infinite path ρ if there exists a path ρ2 such that ρ = ρ1ρ2. The set Cyl(ρ) represents the98

cylinder of infinite paths prefixed by ρ. We denote by Path(M(µ0)) (resp. FPath(M(µ0)))99

the set of infinite (finite) paths ofM(µ0). The observation sequence of the path ρ = s0s1 . . .100

is the word O(ρ) = O(s0)O(s1)... ∈ Σ∞. For a set R of paths, O(R) = {O(ρ) | ρ ∈ R} and101

for a set W of observation sequences, O−1(W ) = {ρ | O(ρ) ∈W}.102
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Figure 1 An observable Markov chain with disclosure 1
4 . The arrow entering the leftmost state

means that the initial disribution is a Dirac on this state. Relevant states are circled twice.

Forgetting the labels, an oMC with an initial distribution µ0 becomes a discrete time
Markov chain (DTMC). In a DTMC, the set of infinite paths is the support of a probability
measure extended from the probabilities of the cylinders by the Caratheodory’s extension
theorem:

PM(µ0)(Cyl(s0s1 . . . sn)) = µ0(s0)p(s1|s0) . . . p(sn|sn−1) .

When M(µ0) is clear from context, we will sometimes omit the subscript, and write P103

for PM(µ0). Let ρ ∈ FPath(M), w ∈ Σ∗ and E ⊆ Σω, with a small abuse of notation104

we write P(ρ) for P(Cyl(ρ)), P(w) instead of P(∪ρ∈O−1(w)Cyl(ρ)) and P(E) instead of105

P({ρ ∈ Path(M(µ0)) | ρ ∈ O−1(E)}).106

2.2 Relevant Paths and Notions of Disclosure107

In this paper, we consider diagnosability and opacity problems; in both cases, one needs to108

identify a set of paths of the system which carries hidden information (the paths represent a109

faulty behavior of the system for diagnosability, and they represent a secret one for opacity).110

We focus on the particular case where the relevant behavior of the system is given by a111
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subset of states Sr ⊆ S, called relevant states, of the model: a (finite or infinite) path s0s1 . . .112

is relevant if si ∈ Sr for some i. The set of infinite relevant paths is denoted Rel.113

I Remark 2. Without loss of generality, we can assume that the set of relevant states is114

absorbing (see [2] for example).115

In stochastic systems, the set of paths disclosing that they are relevant depends on the116

level of confidence that the observer wants. To measure this, we define the proportion of117

relevant paths among those having the same observation sequence as follow:118

I Definition 3 (Proportion of relevant paths). Given an oMC M = (S, p,O), an initial
distribution µ0, Sr ⊆ S and an observation sequence w ∈ Σ∗, the proportion of relevant paths
associated with the observation sequence w is:

Prel
M(µ0)(w) = P({ρ ∈ O−1(w) | ρ ∈ Rel})

P(w) .

I Example 4. Consider the oMC of Figure 1 and the observation sequences ak, akbn and119

akcm. The observation sequence ak, for k > 1, can be produced by a non-relevant path120

with probability 1/2k−1 and by a relevant path with probability 1/2× 1/3k−2. Therefore,121

Prel
M(µ0)(ak) = 1/3k−2

1/2k−2+1/3k−2 which converges to 0 when k grows to infinity. The proportion122

of relevant paths for the observation akbn with k > 1 and n ≥ 1 is similarly Prel
M(µ0)(akbn) =123

1/2k−1

1/2k−1+1/3k−1 which remains constant for extensions of akbn as it does not depend on n.124

Finally, if m ≥ 1, Prel
M(µ0)(akcm) = 1 as no non-relevant path can produce a ‘c’.125

Using this proportion, we define a measure on the quantity of information disclosed by a126

system. We first introduce a notion of approximate disclosure where one considers that a127

path reveals its relevance if the proportion of relevant paths of its observation sequence is128

greater than 1− ε for some given ε > 0.129

I Definition 5 (Approximate information control). Given an oMCM = (S, p,O), an initial
distribution µ0, Sr ⊆ S and ε > 0, an observation sequence w ∈ Σ∗ is ε-disclosing if
Prel
M(µ0)(w) > 1 − ε. It is ε-min-disclosing if it is ε-disclosing and no strict prefix of

w is ε-disclosing. Writing Dε
min for the set of ε-min-disclosing observation sequences, the

ε-disclosure is defined by

Discε(M(µ0)) =
∑

w∈Dεmin

P({ρ ∈ Rel | ∃ρ′ ≤ ρ,O(ρ′) = w})

This definition raises the two following decision problems for any 0 ≤ ε < 1:130

For opacity: the ε-disclosure problem consists in, given λ ∈ [0; 1], deciding whether131

Discε(M(µ0)) > λ.132

For diagnosis: the ε-diagnosability problem consists in deciding whetherDiscε(M(µ0)) =133

P(Rel).134

We can see an asymmetry between the problems introduced for opacity and for diagnosis135

here: in the former the threshold the ε-disclosure is compared to is given by the user while in136

the latter it is derived from the system. The reason for this difference is that a failure of the137

system is often considered important and must be detected, while a small chance of leaking138

information may be deemed acceptable. Unfortunately, it is known that these problems are139

undecidable for ε 6= 0 1:140

1 The case ε = 0, with a non-strict inequality, is a form of exact disclosure for which some problems are
decidable [2, 9].
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I Theorem 6. Given 0 < ε < 1, the positive ε-disclosure problem [2] and the ε-diagnosability141

problem [8] are undecidable for oMCs.142

In order to regain decidability one can consider slightly more qualitative notions of143

approximate information control, that we call accurate approximate. Instead of deeming144

the relevance of a path to be revealed when the proportion of relevant path goes above a145

given threshold, an infinite observation sequence is AA-disclosing if this proportion converges146

toward 1. In other words, when observing an AA-disclosing observation sequence, by waiting,147

one can get an arbitrarily high confidence that the path is relevant.148

I Definition 7 (Accurate approximate information control). Given an oMC M = (S, p,O),
an initial distribution µ0, and Sr ⊆ S, an observation sequence w ∈ Σω is AA-disclosing if
limn→∞ Prel

M(µ0)(w↓n) = 1. Writing DAA for the set of AA-disclosing observation sequences,
the AA-disclosure is defined by

DiscAA(M(µ0)) =
∑

w∈DAA

P({ρ ∈ Rel | O(ρ) = w})

As before, this definition raises two decision problems:149

For opacity: the AA-disclosure problem consists in, given λ ∈ [0; 1], deciding if150

DiscAA(M(µ0)) > λ.151

For diagnosis: the AA-diagnosability problem consists in deciding if DiscAA(M(µ0)) =152

P(Rel).153

AA-diagnosability was initially defined in [26] slightly differently: a system was called154

AA-diagnosable if it was ε-diagnosable for all ε > 0. We introduced the new definition with155

the study of active systems in mind. However, the two definitions are in fact equivalent for156

oMC.157

I Proposition 8. An oMC is AA-diagnosable iff it is ε-diagnosable for all ε > 0.158

2.3 Decidability of the Accurate Approximate Problems for oMCs159

With the accurate approximate approach to information control, one regain decidability. The160

AA-diagnosability problem for finite oMC was shown to be in PTIME in [8]. This result relies161

on the notion of distance between two oMC introduced in [17] and defined in the following162

way: the distance between two oMCM1 andM2 with initial distribution µ1 and µ2 is163

d(M1(µ1),M2(µ2)) = max
E⊆Σω

PM1(µ1)(E)−PM2(µ2)(E).164

The authors of [17] show how to decide in PTIME if the distance between two oMC is 1165

thanks to the following characterisation.166

I Proposition 9 ([17]). Given two oMC M1 and M2 and two initial distributions µ1167

and µ2, d(M1(µ1),M2(µ2)) < 1 iff there exists w ∈ Σ∗ and two distributions π1 and π2168

such that, writing µw1 and µw2 for the probability distributions reached after observing w169

in M1(µ1) and M2(µ2) respectively, we have, for i ∈ {1, 2}, Supp(πi) ⊆ Supp(µwi ) and170

d(M1(π1),M2(π2)) = 0 ( i.e. ∀w′ ∈ Σ∗,PM1(π1)(w′) = PM2(π2)(w′)).171

Finally, the link between the distance 1 of two oMC and AA-diagnosability was established172

in [8], giving the PTIME algorithm:173
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I Theorem 10 ([8]). LetM be a finite oMC and µ0 be an initial distribution. M(µ0) is not174

AA-diagnosable iff there exist two states s ∈ Sr and s′ ∈ S \ Sr with s′ belonging to a bottom175

strongly connected component (BSCC) of M and there exist two finite paths ρ and ρ′ of176

FPath(M(µ0)) such that last(ρ) = s, last(ρ′) = s′, O(ρ) = O(ρ′) and d(M(1s),M(1s′)) < 1.177

Considering only the sufficient condition, a more general result allowing for infinite oMC178

and which we will need later, was in fact proven in [8]: Let M be a (potentially infinite)179

oMC, µ0 be an initial distribution, two states s ∈ Sr and s′ ∈ S \ Sr with s′ such that no180

relevant state can be reached from s′ and two finite paths ρ and ρ′ of FPath(M(µ0)) such181

that last(ρ) = s, last(ρ′) = s′, O(ρ) = O(ρ′). Then M(µ0) is AA-diagnosable implies that182

d(M(1q),M(1q′)) = 1.183

While AA-diagnosability can be decided in polynomial time, the AA-disclosure problem is184

a bit more complicated.185

I Theorem 11. The AA-disclosure problem for finite oMC is PSPACE-complete.186

Sketch of proof. In order to solve the AA-disclosure problem in EXPTIME. We first build187

an exponential size oMC which contains additional information compared to the original one.188

Then we show that there are two kinds of BSCC in this new oMC: the ones that are reached189

by paths that almost surely have an AA-disclosing observation sequence, and the ones that190

are reached by paths that do not correspond to AA-disclosing observation sequences. We191

then use the existing results for the AA-diagnosability problem to determine the status of192

each BSCC. Finally, computing the AA-disclosure of the oMC is equivalent to computing the193

probability to reach the "AA-disclosing" BSCC, which can be done in NC in the size of the194

oMC, thus giving an overall PSPACE algorithm.195

The hardness is obtained by reduction from the universality problem for non-deterministic196

finite automaton (NFA), which is known to be PSPACE-complete [20]. J197

3 Active Approximate Diagnosis198

We will now consider an active setting where a controller can modify the behaviour of the199

system. Exact notions of diagnosis [6] and opacity [2] have been studied in an active setting.200

The frameworks used for each notion are not equivalent however as they do not give the201

same power to the controller. This difference comes from an intrinsic distinction between the202

two problems:203

Diagnosability corresponds to situations where one wants to obtain information from the204

system through exterior control. Therefore the controller is supposed to have the same205

amount of information as the diagnoser.206

For opacity on the contrary, the control either aims to diffuse an information outside of207

the system (case of a virus for example) or is implemented in the system during the design208

to protect it. In these two cases, the controller knows the exact state of the system.209

Therefore we consider Weighted Markov Chains to study diagnosability and in the next210

section we will use Markov Decision Processes for opacity.211

3.1 Diagnosis for Weighted Markov chains212

I Definition 12 (WMC). A weighted Markov Chain (WMC) over alphabet Σ is a tuple213

M = (S, T,O) where S is a finite set of states, T : S × S → N is the transition function214

labelling transitions with integer weights and O : S → Σ is the observation function.215
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The alphabet is partitioned into controllable and uncontrollable events Σ = Σc ] Σe. A216

set Σs
0 ⊆ Σ of allowed events in a state s ∈ S is a set of observations such that Σe ⊆ Σs

0217

and {s′ ∈ S | T (s, s′) > 0 ∧ O(s′) ∈ Σs
0} 6= ∅. Given a state s and a set of allowed218

events Σs0, we define the transition probability p(s,Σs0) such that for all s′ with O(s′) ∈ Σs0,219

p(s,Σs
0)(s′) = T (s,s′)∑

s′′,O(s′′)∈Σs0
T (s,s′′)

. As before, we write p(s′|s,Σs
0) instead of p(s,Σs

0)(s′).220

Given an initial distribution µ0, an infinite path of a WMC M is a sequence ρ = s0Σ0s1Σ1 . . .221

where µ0(s0) > 0 and p(si+1|si,Σi) > 0, for si ∈ S and Σi is a set of allowed events in si,222

for all i ≥ 0. As for oMC, we define finite paths, and we use similar notations for the various223

sets of paths. A sequence of observations and set of allowed events b ∈ (Σ× 2Σ)∗Σ is called224

a knowledge sequence. The knowledge sequence of a path of a WMC ρ = s0Σ0s1Σ1 . . . si is225

K(ρ) = O(s0)Σ0O(s1)Σ1 . . .O(si).226

The nondeterministic choice of the set of allowed events is resolved by strategies.227

I Definition 13 (Strategy for WMC). A strategy of WMC M with initial distribution µ0 is228

a mapping σ : (Σ× 2Σ)∗Σ→ Dist(2Σ) associating to any knowledge sequence a distribution229

on sets of events.230

We will only consider here strategies that do not generate a deadlock, i.e. strategies σ such that
for all state s reached after a knowledge b, σ(b) is a set of allowed events for s. Given a strategy
σ, a path ρ = s0Σ0s1Σ1 . . . of M is σ-compatible if for all i, Σi ∈ Supp(σ(K(s0Σ0s1Σ1 . . . si)).
A strategy σ is deterministic if σ(b) is a Dirac distribution for each knowledge sequence b.
In this case, we denote by σ(b) the set of allowed actions Σa ∈ 2Σ such that σ(b) = 1Σa . Let
b be a knowledge sequence. We define BM(µ0)(b) the belief about states corresponding to b
as follows:

BM(µ0)(b) = {s | ∃ρ ∈ FPath(M(µ0)), K(ρ) = b ∧ s = last(ρ)}

A strategy σ is belief-based if for all b, σ(b) only depends on its belief BM(µ0)(b) (i.e. given two231

knowledge sequence b and b′ if BM(µ0)(b) = BM(µ0)(b′) then σ(b) = σ(b′)). For belief-based232

strategies, we will sometimes write σ(B) for the choice of the strategy made for knowledge233

sequences producing the belief B.234

As for oMC, the secret is defined by the reachability of a set Sr ∈ S of secret states of the235

WMC and note that the construction ensuring that once a secret state is visited, the path236

remains secret forever, extends naturally from oMC to WMC. We consider only WMC of237

this form in the following.238

A strategy σ on M(µ0) defines an infinite Markov chain Mσ(µ0) with set of states the239

finite σ-compatible paths, that can be equipped with the observation function associating240

Σn−1O(sn) with the state associated to the finite path ρ = s0Σ0 . . .Σn−1sn (Σn−1 being241

omitted if n = 0). The transition function pσ is defined for ρ a σ-compatible path and242

ρ′ = ρΣas
′ by pσ(ρ′|ρ) = σ(K(ρ))(Σa)p(s′|s,Σa) and we denote by PMσ(µ0) the associated243

probability measure. When the strategy possesses some good regularity properties, this oMC244

is equivalent to a finite one (i.e. there is a one-to-one correspondence between the paths of each245

oMC, it preserves the knowledge sequence and the probability. The two oMC have therefore246

the same disclosure properties). For instance given a deterministic belief based strategy247

σ, one can define the oMC M′σ with set of states S × 2Σ × 2S , observation O′σ(s,Σ•, B) =248

(O(s),Σ•), initial distribution µσ0 (s, ∅,Supp(µ0)∩O−1(O(s))) = µ0(s) and transition function249

p′σ((s1,Σ1, B1) | (s2,Σ2, B2)) = p(s2 | s1,Σ2) if σ(B1) = Σ2 and B2 = BM(µ1)(O(s2)) for250

µ1 a distribution of support B1, p′σ((s1,Σ1, B1) | (s2,Σ2, B2)) = 0 otherwise. The oMC251

M′σ is exponential in the size of M and is equivalent to Mσ. When considering belief-based252

strategies, we will call Mσ the finite equivalent oMC.253



XX:8 Approximate Diagnosis and Opacity of Stochastic Systems

a

q0
a

r0 b

r1

c

r2

a

q1

b

q2

1

1

1

1

1

1

1

1

1

1

a

(q0. ∅. {q0})
{a. c}. a

(r0. {a. c}. {r0. q1})

{a. c}. c

(r2. {a. c}. {r2})

{a. c}. a

(q1. {a. c}. {r0. q1})

1/2

1/2

1/2
1

1

1/2

Figure 2 A WMC (left) and the finite oMC (right) induced by this WMC and the strategy that
always allow {a, c}.

Writing VMσ(µ0) for the set of infinite paths corresponding to AA-disclosing observation254

sequences in Mσ(µ0), we have DiscAA(Mσ(µ0)) = PMσ(µ0)(VMσ(µ0)). Remark that an255

observation sequence of the oMC induced by a WMC and a strategy contains both the256

observation of the state of the WMC and the choices of allowed events done by the strategy.257

The observation sequence of a path in the induced oMC is therefore equal to the knowledge258

sequence of the corresponding path in the WMC. This choice of observation was done to259

express that the choices made by the strategy are known to the observer. An important260

consequence of this decision is that the strategy does not modify which observation sequences261

are AA-disclosing.262

I Lemma 14. Given M a WMC, µ0 an initial distribution, Sr ⊆ S, σ, σ′ two strategies and263

w an observation sequence produced by at least one path of Mσ(µ0) and one path of Mσ′(µ0),264

then Prel
Mσ′ (µ0)(w) = Prel

Mσ(µ0)(w).265

We study the two following diagnosability problems over WMC:266

The AA-diagnosability problem consists in, given a WMC M and an initial distribution267

µ0, deciding whether there exists a strategy σ such that Mσ(µ0) is AA-diagnosable.268

The strategy problem consists in, given an AA-diagnosable WMCM with initial distribution269

µ0, computing the strategy σ achieving DiscAA(Mσ(µ0)) = PMσ(µ0)(Rel).270

I Remark 15. Even if this is not the usual framework of opacity, one may wonder whether it271

is possible to decide whether there exists a strategy allowing to obtain a disclosure above a272

given threshold. This can however easily be reduced to the emptiness problem of probabilistic273

automata which is well known to be undecidable [22]. Moreover, this reduction holds for274

all three notions of disclosure. This undecidability result vindicates the need for a specific,275

simpler framework for opacity.276

I Example 16. Consider the WMC on the left of Figure 2. Without any control (i.e. with277

a strategy permanently allowing every event), one obtains the oMC of Figure 1, which is278

not AA-diagnosable. However, assuming ‘b’ is a controllable event, the strategy that always279

forbid it induces the oMC on the right of Figure 2 which is AA-diagnosable: every relevant280

path almost surely contains a ‘c’ that can not be generated by a non-relevant path. This281

oMC is in fact diagnosable exactly as once a ‘c’ occurs the proportion of relevant paths is282

equal to 1.283
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3.2 Solving AA-diagnosability for WMCs284

While approximate diagnosability is simpler than exact diagnosability for oMC (PTIME vs285

PSPACE)[8, 7], for WMCs this difference disappears and both are EXPTIME-complete. The286

EXPTIME-completeness of exact diagnosis for WMC was established in [6]. We will devote287

this section to the proof of the following theorem:288

I Theorem 17. The AA-diagnosability is EXPTIME-complete.289

First, the hardness is established by a reduction from safety games with imperfect290

information [10]. This result is obtained directly by applying the proof of Proposition 3 of [6].291

292

I Proposition 18. The AA-diagnosability is EXPTIME-hard.293

Proof. In the proof of Proposition 3 of [6], a given safety game with imperfect information has294

a winning strategy iff no path is relevant. Moreover if a path is relevant, then its observation295

sequence is not AA-disclosing. More precisely, for ρ a relevant path, the proportion of relevant296

paths with observation sequence K(ρ) is equal to 1
2 . Therefore the existence of a winning297

strategy in this game is equivalent to AA-diagnosability ensuring the EXPTIME-hardness. J298

The most important step to solve AA-diagnosability for WMC is to develop a good299

understanding on the strategies optimising AA-disclosure. For starters, with a straightforward300

adaptation of a proof of [16], we show that one can consider deterministic strategies only.301

I Lemma 19. Given M a WMC, µ0 an initial distribution, Sr ⊆ S and σ a strategy,302

there exists a deterministic strategy σ′ such that DiscAA(Mσ(µ0)) = PMσ(µ0)(Rel) implies303

DiscAA(Mσ′(µ0)) = PMσ′ (µ0)(Rel).304

We can further restrict the strategies by limiting ourselves to belief-based strategy. This305

is far from an intuitive result. Indeed, while the AA-diagnosability of an oMC depends heavily306

on the exact values of the probabilities in the oMC, this result implies that the control only307

needs to remember the structure of the WMC. Remark though that the choice made in each308

belief depends on the probabilities.309

I Lemma 20. Given M a WMC, µ0 an initial distribution, Sr ⊆ S and σ a deterministic310

strategy, there exists a deterministic belief based strategy σ′ such that DiscAA(Mσ(µ0)) =311

PMσ(µ0)(Rel) implies DiscAA(Mσ′(µ0)) = PMσ′ (µ0)(Rel).312

Proof. Let M be a WMC, µ0 be an initial distribution and σ be a deterministic strategy313

such that Mσ(µ0) is AA-diagnosable. We define a belief based strategy σ′ from σ in the314

following way. Let ρ ∈ FPath(Mσ(µ0)). We define by Eρ the set of finite path producing315

the same belief as ρ, i.e. Eρ = {ρ′ ∈ FPath(Mσ(µ0)) | BM(µ0)(O(ρ′)) = BM(µ0)(O(ρ))}. We316

define σ′(BM(µ0)(O(ρ))) =
⋃
ρ′∈Eρ σ(O(ρ′)). Let us show that Mσ′(µ0) is AA-diagnosable.317

Let two states q = (s,Σ•, B) ∈ Sr and q′ = (s′,Σ•, B) ∈ S \ Sr belonging to a BSCC of318

Mσ′(µ0) and reached by two finite paths ρ and ρ′ of FPath(Mσ′(µ0)) with O(ρ) = O(ρ′). We319

will show that d(Mσ′(1q),Mσ′(1q′)) = 1 using the characterisation given in Proposition 9.320

More precisely, for any observations sequence w ∈ Σ∗, and any pair of distributions on the321

set of states reached from q and from q′ after observing w, we consider the probabilistic322

language generated by similar distributions in Mσ (i.e. distributions giving the same weight323

to the states of the original WMC M) and rely on the fact that Mσ is AA-diagnosable to324

show that the generated languages are different. This implies the distance is 1 thanks to325

Proposition 9.326
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Let w ∈ Σ∗ such that PMσ′ (1q)(w) > 0 and PMσ′ (1q′ )(w) > 0, we denote by Bw, Bq and327

Bq′ the beliefs reached after observing w from the beliefs B, {q} and {q′} respectively, let328

two distributions µ′1 and µ′2 such that Supp(µ′1) ⊆ Bq, Supp(µ′2) ⊆ Bq′ . As σ′ does not329

allow events that are never allowed by σ in the same belief, there exists an observation330

sequence wσ ∈ Σ∗ such that PMσ(µ0)(wσ) > 0 and the belief reached in M(µ0) after a path of331

observation wσ from the initial distribution is Bw, i.e. BM(µ0)(wσ) = Bw. We can thus define332

initial distributions µ1 and µ2 on the set of states reached after observing wσ in Mσ mimicking333

the distributions µ′1 and µ′2 (i.e. giving the same probability to configurations associated to334

the same state of M). From the remark following Theorem 10 and Proposition 9, there exists335

a word wd such that PMσ(µ1)(wd) 6= PMσ(µ2)(wd). This implies that there exists a word w′d336

such that PMσ′ (µ′1)(w′d) 6= PMσ′ (µ′2)(w′d). Indeed, let E be the set of observation sequences of337

the form w′a where w′ is a strict prefix of wd, a ∈ Σ, PMσ′ (µ′1)(w′a) > 0 and PMσ(µ1)(w′a) = 0.338

If PMσ′ (µ′1)(E) 6= PMσ′ (µ′2)(E), this implies our result. Else, by construction of the strategy339

σ′ we have:340

PMσ′ (µ′1)(wd) =PMσ(µ1)(wd)× (1− PMσ′ (µ′1)(E))341

6=PMσ(µ2)(wd)× (1− PMσ′ (µ′1)(E))342

=PMσ(µ2)(wd)× (1− PMσ′ (µ′2)(E))343

=PMσ′ (µ′2)(wd),344
345

in which case we can choose w′d = wd. As this holds for any w ∈ Σ∗ and pair of distributions346

µ′1 and µ′2, according to Proposition 9 we have d(Mσ′(1q),Mσ′(1q′)) = 1. From Theorem 10,347

we can thus deduce that Mσ′(µ0) is AA-diagnosable. Therefore belief-based strategies are348

sufficient to decide AA-diagnosability. J349

A naive NEXPTIME algorithm can be obtained from these two lemmas: we guess a350

deterministic belief-based strategy then verify AA-diagnosability of the exponential oMC351

generated by the WMC and the strategy. In the following proposition, we show how to352

efficiently build a good belief-based strategy, which gives us an EXPTIME algorithm.353

I Proposition 21. The AA-diagnosability problem is in EXPTIME.354

Proof. Let M be a WMC and µ0 be an initial distribution. To obtain the result, we first355

show that within a BSCC, the least restrictive a strategy is, the better it is for the purpose356

of diagnosis. However, a strategy too permissive may lead to the creation of new BSCC357

which may not be AA-diagnosable. Therefore, we will build a good strategy by an iterative358

procedure starting from the strategy allowing everything, then restricting it at each step to359

remove problematic BSCCs.360

Let σ and σ′ be two deterministic belief-based strategies such that for any belief B of361

M σ(B) ⊆ σ′(B), let q be a relevant state associated to the belief B and belonging to a362

BSCC of both Mσ(µ0) and Mσ′(µ0). Assume that there exists a positive measure of paths363

in Mσ′(µ0) that visit q and that are not associated to an AA-disclosing observation sequence.364

Defining B′ = (B \ Sr) ∪ {q}, this is equivalent to saying that the WMC Mσ′(µ1), where365

µ1 is an initial distribution of support B′, is not AA-diagnosable. Therefore we can use the366

characterisation of Theorem 10. Without loss of generality, as q belongs to a BSCC, we can367

assume the pair of state given by the characterisation is (q, q′) where q′ 6∈ Sr, is associated to368

the belief B, belongs to a BSCC of Mσ′(µ1) and is such that d(Mσ′(1q),Mσ′(1q′)) < 1. Let369

w, π1 and π2 be the observation sequence and the two distributions obtained by applying370

Proposition 9 on the pair of WMC (Mσ′(1q),Mσ′(1q′)). Let q′′ 6∈ Sr be a state belonging to371
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a BSCC of Mσ(µ1) reachable from q′ by a path which observation sequence w′ is prefixed by372

w. Let π′1 and π′2 be the distribution obtained after observing w′ starting in π1 and π2. As373

∀v ∈ Σ∗,PMσ′ (π1)(v) = PMσ′ (π2)(v), we also have ∀v ∈ Σ∗,PMσ′ (π′1)(v) = PMσ′ (π′2)(v). This374

implies that ∀v ∈ Σ∗,PMσ(π′1)(v) = PMσ(π′2)(v). Indeed, given v ∈ Σ∗, we have375

PMσ′ (π′1)(v) =
∑

ρ∈O−1(v)

PMσ′ (π′1)(ρ)376

=
∑

ρ=s0Σ0...sn∈O−1(v)

π′1(s0)
n−1∏
i=0

σ′(K(v↓2i+1))(Σi)p(si+1 | si,Σi)377

=
n−1∏
i=0

σ′(K(v↓2i+1))(Σi)
∑

ρ=s0Σ0...sn∈O−1(v)

π′1(s0)
n−1∏
i=0

T (si, si+1)∑
s′′,O(s′′)∈Σi T (si, s′′)

378

=
n−1∏
i=0

σ′(K(v↓2i+1))(Σi)
∑

ρ=s0Σ0...sn∈O−1(v)

π′2(s0)
n−1∏
i=0

T (si, si+1)∑
s′′,O(s′′)∈Σi T (si, s′′)

379

= PMσ′ (π′2)(v).380
381

As a consequence, d(Mσ(1q),Mσ(1q′)) < 1. From the remark following Theorem 10, this382

implies that Mσ(µ1) is not AA-diagnosable and thus there exists a positive measure of paths383

in Mσ(µ0) that visit q and that are not associated to an AA-disclosing observation sequence.384

Therefore, having restricted the strategy σ′ did not allow to regain AA-diagnosability of the385

paths visiting q. This means that a strategy achieving AA-diagnosability of the WMC must386

ensure that q cannot be reached.387

Using this result, we build iteratively the most permissive strategy ensuring AA-diagnosability.388

We start with the strategy σ0 allowing everything. Assume we built the strategy σk such389

that any less permissive strategy do not ensure AA-diagnosability. If Mσk(µ0) is not AA-390

diagnosable, there exists two states s and s′ associated to the same belief B that satisfies the391

characterisation of Theorem 10. W.l.o.g one can assume that both of these states belong to392

BSCCs of Mσk(µ0). From our preliminary result, we know that any strategy that contains393

the states s and s′ in a BSCC does not ensure AA-diagnosability. As any strategy less394

permissive than σk does not ensure AA-diagnosability, we need to restrict the strategy so395

that s and s′ are not reachable, or that s and s′ are not in BSCCs anymore. The latter is396

in fact not sufficient as the remark following Theorem 10 would still apply on this pair of397

states. Thus we build σk+1 as the most permissive strategy such that Mσk+1(µ0) does not398

contain s and s′. This can easily be done by belief based strategies as removing these states399

is equivalent to removing the belief B. This procedure ends when the strategy σn that is400

created either is the most permissive strategy ensuring AA-diagnosability or if one cannot401

build a strategy removing the problematic states/belief. This algorithm is in EXPTIME as402

every step of the procedure can be done in exponential time (verification of AA-diagnosability,403

identification of the pair of problematic states and creation of the new strategy are all steps404

that can be done in EXPTIME) and there is at most exponentially many steps as each one of405

them removes at least one belief from the system, and there are exponentially many beliefs.406

Therefore, the AA-diagnosability problem can be solved in EXPTIME. J407

The previous proof building the strategy ensuring AA-diagnosability when it exists, this408

algorithm also solves the strategy problem.409



XX:12 Approximate Diagnosis and Opacity of Stochastic Systems

4 Active Approximate Opacity410

As discussed at the beginning of Section 3, the framework of the study of active opacity is411

different from the one used for active diagnosis. While most elements are similar, strategies412

are given more power in the way they observe and affect the system. Moreover, the goal413

of the strategies is now either to maximise or to minimise the disclosure of information414

depending on whether they are deemed adversarial or cooperative.415

4.1 Opacity for Observable Markov Decision Processes416

I Definition 22 (oMDP). An observable Markov Decision Process (oMDP) over alphabet Σ417

is a tuple M = (S,Act, p,O) where S is a finite set of states, Act = ∪s∈SA(s) where A(s) is418

a finite non-empty set of actions for each state s ∈ S, p : S × Act→ Dist(S) is the (partial)419

transition function defined for (s, a) when a ∈ A(s) and O : S → Σ is the observation420

function.421

As before, we write p(s′|s, a) instead of p(s, a)(s′). Given an initial distribution µ0, an infinite422

path of M(µ0) is a sequence ρ = s0a0s1a1 . . . where µ0(s0) > 0 and p(si+1|si, ai) > 0, for423

si ∈ S, ai ∈ A(si), for all i ≥ 0. Finite paths are defined like for WMC, and we use similar424

notations for the various sets of paths. Given a path ρ = s0a0s1a1 . . . si its observation is425

O(ρ) = O(s0)O(s1) . . .O(si).426

The nondeterministic choice of the action is resolved by strategies.427

I Definition 23 (Strategy for oMDP). A strategy for an oMDP M with initial distribution µ0428

is a mapping σ : FPath(M(µ0))→ Dist(Act) associating with any finite path ρ a distribution429

σ(ρ) on the actions in A(last(ρ)).430

Recall that strategies for WMCs were making their choice based on the knowledge sequence431

alone. This represented that the strategy was extern and thus only had partial information432

on the system. The oMDP framework however gives to the strategy full knowledge of the433

path. Similarly as for WMC, given a strategy σ, a path ρ = s0a0s1a1 . . . of M is σ-compatible434

if for all i, ai ∈ Supp(σ(s0a0s1a1 . . . si)). A strategy σ is observation-based if for any finite435

path ρ, σ(ρ) only depends on the observation O(ρ) and on the last state last(ρ). We can also436

adapt the notions of deterministic and belief-based strategies.437

A strategy σ on M(µ0) defines a (possibly infinite) oMC Mσ(µ0) with set of states438

FPath(Mσ(µ0)) (the finite σ-compatible paths), that can be equipped with the observation439

function associating O(last(ρ)) with the finite path ρ. The transition function pσ is defined for440

ρ ∈ FPath(Mσ(µ0)) and ρ′ = ρas′ by pσ(ρ′|ρ) = σ(ρ)(a)p(s′|s, a) and we denote by PMσ(µ0)441

the associated probability measure. The definition of the observation function shows that442

the observer of the system does not know what action is chosen by the strategy at any443

step. However, the observer still knows which strategy was selected initially, allowing him to444

deduce the oMC Mσ.445

Disclosure values for oMDP are defined according to the status of the strategies, by446

considering them as adversarial or cooperative with respect to the system.447

I Definition 24 (Disclosure of an oMDP). Given an oMDP M = (S,Act, p,O), an ini-448

tial distribution µ0 and a set of relevant states Sr ⊆ S, the maximal AA-disclosure of Sr
449

in M(µ0) is DiscAA
max(M(µ0)) = supσDiscAA(Mσ(µ0)) and the minimal AA-disclosure is450

DiscAA
min(M(µ0)) = infσDiscAA(Mσ(µ0)).451

We study the following opacity problems over oMDP:452
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Quantitative decision problems: The minimal AA-disclosure problem consists in,453

given an oMDP M and a threshold θ ∈ [0, 1], deciding if DiscAA
min(M) ≤ θ? The maximal454

AA-disclosure problem consists in, given an oMDP M and a threshold θ ∈ [0, 1], deciding455

if DiscAA
max(M) ≥ θ?456

Qualitative decision problems: The limit-sure disclosure problem is the special case457

of the AA-disclosure problem with θ = 1 for maximisation and with θ = 0 for minimisation458

and the almost-sure disclosure problem consists in deciding whether there exists a strategy459

achieving a disclosure of 1 for maximisation and 0 for minimisation.460

4.2 Possible Restriction on the Strategies461

The decidability result for AA-diagnosability of WMC relied strongly on a restriction to a462

sufficient subset of strategies. It is thus natural to take a similar approach for opacity. We463

can indeed establish some such restriction, for instance to observation-based strategies. This464

is proven for an exact notion of disclosure in [2], however the very same proof applies to the465

accurate approximate notion.466

I Proposition 25 ([2]). Given an oMDP, an initial distribution µ0, Sr ⊆ S and a strategy σ,467

there exists an observation-based strategy σ′ such that DiscAA(Mσ(µ0)) = DiscAA(Mσ′(µ0)).468
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Figure 3 Left: An oMDP where randomisation or non-belief based strategies are necessary to
maximise the AA-disclosure. Right: An oMDP where randomisation is necessary to minimise the
disclosure.

However, the restriction cannot be extended to deterministic belief-based strategies.469

Consider the example on the left of Figure 3 with maximisation of the AA-disclosure in470

mind. There are three components, in each of them a ‘b′ is always followed by an ‘a′,471

however, the probability that a ‘b′ occurs after an ‘a′ varies. This probability is 3
4 in the472

upper component, 1
4 in the middle one and depends on the strategy on the one below. A473

deterministic belief based strategy will either always choose the action ‘c′ or always the474

action ‘d′. Such a strategy replicates the probabilistic behaviour of one of the other two475

components, inducing an AA-disclosure of 0. However a randomised strategy, giving for476

instance a half probability to both actions obtains a 1
2 probability to produce a ‘b′ after an477

‘a′. This belief-based randomised strategy induces then an AA-disclosure of 1
3 . One could478
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define a deterministic strategy which is not belief based and obtain a disclosure of 1
3 too by479

alternating the choices of the action ′c′ and ′d′. Therefore, maximising strategies require480

randomisation, more memory than just the belief or both2.481

When aiming to minimise the AA-disclosure, we can show that randomisation is necessary.482

Consider the oMDP depicted on the right of Figure 3. The strategy only has to make a choice483

between two actions during the first step. Thus, there are only two existing deterministic484

strategies, choosing respectively ‘c′ or ‘d′ in q0. In both cases, the disclosure is 1
2 . On the485

other hand, any randomized strategies σp such that σp(q0) activates ‘c′ with probability p486

and ‘d′ with probability (1− p) with 0 < p < 1, induces an oMC that do not contain any487

AA-disclosing observation, hence the disclosure is 0.488

4.3 (Un)decidability of the Opacity Problems489

The examples of the previous subsection point to the idea that the traditional framework for490

active opacity is more complicated than the one considered for active diagnosability. This is491

confirmed by the (un)decidability results that we establish below. The undecidability proofs492

we establish are done by reduction of problems in probabilistic automata.493

Let us first consider the maximisation of AA-disclosure.494

I Theorem 26. The maximal AA-disclosure problem is undecidable. The maximal limit-sure495

disclosure problem is undecidable.496

As a silver lining, the almost-sure AA-disclosure problem is easily decidable.497

I Theorem 27. The maximal almost-sure AA-disclosure problem is in PTIME.498

These results are not exactly surprising as opacity problems for maximisation had already499

been shown to be undecidable for exact notions of opacity in [2]. However, while in this same500

paper the authors show that most opacity problems for minimisation are decidable, these501

problems become undecidable for the accurate approximate notion of opacity.502

I Theorem 28. The minimal almost-sure and the minimal limit-sure AA-disclosure decision503

problems are undecidable.504

I Corollary 29. The minimal AA-disclosure decision problem is undecidable.505
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Proof. LetM be a finite oMC and µ0 an initial distribution.566

Suppose thatM(µ0) is AA-diagnosable. By definition, given an AA-disclosing observation567

sequence w, for all ε > 0 there exists n ∈ N such that w↓n is ε-disclosing. Therefore for all ε >568

0, DiscAA(M(µ0)) ≤ Discε(M(µ0)). Moreover, asM is AA-diagnosable, DiscAA(M(µ0)) =569

P(Rel). Thus, Discε(M(µ0)) ≥ P(Rel). Finally, by definition of Discε, for all ε > 0570

Discε(M(µ0)) ≤ P(Rel). Thus Discε(M(µ0)) = P(Rel) andM(µ0) is ε-diagnosable.571

Conversely, suppose thatM(µ0) is not AA-diagnosable. Let us consider the set of infinite572

words D = ∩ε>0D
ε
minΣω \DAA. Let us show that P(D) = 0. Let w ∈ D, we have (1) for573

all ε > 0 there exists n ∈ N such that Prel
M(µ0)(w↓n) > 1− ε and (2) (Prel

M(µ0)(w↓n))n∈N574

does not converge toward 1. Given ε > 0 and denoting by Eε the set of ε-min-disclosing575

observaion sequence, due to (1) we have576

P({ρ ∈ O−1(D) \ Rel}) <
∑
w∈Eε

P({ρ ∈ O−1(w) \ Rel})577

<
∑
w∈Eε

P({ρ ∈ O−1(w) ∩ Rel}) ε

1− ε578

<
ε

1− ε .579
580

As this holds for all ε > 0, P({ρ ∈ O−1(D) \ Rel}) = 0. Moreover, due to (2), there exists581

ε > 0 such that for infinitely many n ∈ N we have Prel
M(µ0)(w↓n) < 1− ε. For all k ∈ N, we582

denote by Ek the set of prefixes w of words of D such that Prel
M(µ0)(w) < 1− ε for the k’th583

time. We then have for all k:584

P({ρ ∈ O−1(Ek) \ Rel}) =
∑
w∈Ek

P({ρ ∈ O−1(w) \ Rel})585

>
∑
w∈Ek

P({ρ ∈ O−1(w) ∩ Rel}) ε

1− ε586

>
ε

1− εP({ρ ∈ O−1(D) ∩ Rel})587
588

As (P({ρ ∈ O−1(Ek) \ Rel}))k∈N converges toward P({ρ ∈ O−1(D) \ Rel}) which is equal to589

0, this implies that P({ρ ∈ O−1(D) ∩ Rel}) = 0 and thus that P(D) = 0. As a consequence,590

limε→0 P(Dε
min) = P(DAA). As M(µ0) is not AA-diagnosable by assumption, there thus591

exists ε > 0 such thatM(µ0) is not ε-diagnosable. J592

B AA-disclosure problem for oMC593

I Theorem 11. The AA-disclosure problem for finite oMC is PSPACE-complete.594

Proof. Let us first show how to solve the AA-disclosure problem in EXPTIME. We first build595

an exponential size oMC which contains additional information compared to the original one.596

Then we show that there are two kinds of BSCC in this new oMC: the ones that are reached597

by paths that almost surely have an AA-disclosing observation sequence, and the ones that598

are reached by paths that do not correspond to AA-disclosing observation sequences. We can599

then use the existing results for the AA-diagnosability problem to determine the status of600

each BSCC. Therefore, computing the AA-disclosure of the oMC is equivalent to computing601

the probability to reach the "AA-disclosing" BSCC, which can be done in NC in the size of602

the oMC, thus giving an overall PSPACE algorithm.603

Let M = (S, p,O) be a finite oMC and µ0 be an initial distribution. We build a new604

oMCM′ = (S′, p′,O′) which has the same behaviour asM but where the states are enriched605
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with an additional information (the set of states the system can be in, given the produced606

observation sequence):607

S′ = S × 2S ;608

For (s,B), (s′, B′) ∈ S′, p′((s′, B′) | (s,B)) = p(s′ | s) if B′ = ∪q∈BSupp(p(q)) ∩609

O−1(O(s′)) else, p′((s′, B′) | (s,B)) = 0;610

For (s,B) ∈ S′, O′(s,B) = O(s).611

We define the initial distribution µ′0 forM′ by µ′0(s,Supp(µ0) ∩O−1(O(s))) = µ0(s) for all612

s ∈ S. There is a one-to-one correspondence between the paths ofM(µ0) andM′(µ′0): every613

path ρ = s0s1 · · · sn ofM(µ0) is associated to an unique path ρ′ = (s0, B0)(s1, B1) · · · (sn, Bn)614

with O(ρ) = O(ρ′), PM(µ0)(ρ) = PM′(µ′0)(ρ′) and Bn contains the set of states of S that can615

be reached with a path of observation O(ρ). Due to the latter property, Bn only depends on616

O(ρ) and is called the belief associated to O(ρ).617

Let (s,B) ∈ S′ such that s ∈ Sr and (s,B) belongs to a BSCC of M′.We claim that618

either for every path ρ ending in (s,B), P({ρ′ ∈ Path(M′(µ′0)) | ρ � ρ′ ∧ O(ρ′) ∈ DAA}) = 0619

or for every path ρ ending in (s,B), P({ρ′ ∈ Path(M′(µ′0)) | ρ � ρ′ ∧O(ρ′) ∈ DAA}) = P(ρ).620

In other words, there are two categories of BSCC composed of relevant states: the ones621

that almost surely accurate approximately disclose the relevance and the ones that do not622

accurate approximately disclose the relevance at all. Moreover, the BSCC containing (s,B)623

do not disclose the relevance at all iff there exists a state s′ ∈ B such that s′ belongs to a624

BSCC of B, s′ 6∈ Sr and d(M(1s),M(1s′)) < 1. The proof of this claim can be obtained in625

a straightforward manner from the proof of Theorem 10. For the sake of pedagogy, we give626

some elements of this proof below.627

Assume that for all s′ ∈ B such that s′ belongs to a BSCC of B and s′ 6∈ Sr we have628

d(M(1s),M(1s′)) = 1. Then denoting B′ = (B \ Sr) ∪ {s}, then Lemma B of [9] directly629

tells us that for any initial distribution µ1 of support B′, we have that M′(µ1) is AA-630

diagnosable. As the states of B \B′ can only increase the relevance proportion, this ensures631

that P({ρ′ ∈ Path(M′(µ′0)) | ρ � ρ′ ∧ O(ρ′) ∈ DAA}) = P(ρ).632

Conversely, if there exists a state s′ ∈ B such that s′ belongs to a BSCC of B, s′ 6∈ Sr and633

d(M(1s),M(1s′)) < 1, then one can rely on the proof of Lemma A of [9] to obtain the result.634

We develop the proof here in the simpler case where B does not contain any relevant state635

beside s. Using Proposition 9 and the correspondence betweenM andM′, one deduces that636

there exists ρ(s,B) ∈ FPath(M(1(s,B))) and α > 0 such that for all w ∈ Σ∗ with O(ρ) ≤ w637

PM′(1(s,B))({ρ
′ ∈ FPath(M′(1(s,B))) | ρ(s,B) � ρ′ ∧ O(ρ′) = w})638

≤ αPM′(1(s′,B))({ρ
′ ∈ FPath(M′(1(s′,B))) | O(ρ′) = w}).639

640

Therefore, for all w ∈ Σ∗ and initial distribution µ1 of support B we have:641

Prel
M′(µ1)(w) ≤

PM′(1(s,B))(w)

PM′(1(s,B))(w) + µ1(s′)
µ1(s) PM′(1(s′,B))(w)

(1)642

≤

εw +
∑

ρ|O(ρρ(s,B))≤w

αPM′(1(s,B))(ρ)
PM′(1(s,B))(ρ(s,B))

PM′(1(s′,B))(w
ρ)

PM′(1(s,B))(w) + µ1(s′)
µ1(s) PM′(1(s′,B))(w)

(2)643

644

where εw = PM′(1(s,B))({ρ ∈ FPath(M(1(s,B)) |6 ∃ρ1, ρ2, ρ = ρ1ρ(s,B)ρ2 ∧O(ρ) = w}) and wρ645

is such that w = O(ρ)wρ. As with probability 1, a run ofM′(1(s,B)) visits (s,B) infinitely646

often, it will almost surely contain a ρ(s,B) subrun, more precisely: the value εw
PM′(1(s,B))(w)647

almost surely converges to 0 when |w| diverges to∞. Let w ∈ Σω, if Prel
M′(µ1)(w↓n) n−→∞−−−−→ 1648
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then, for all ρ such that O(ρρ(s,B)) ≤ w we have that
PM′(1(s′,B))(w

ρ
↓n)

PM′(1(s,B))(w↓n) converges to 0, thus,649

due to Equation 2, εw↓n does not converge to 0, which can only happen with probability650

0. Therefore Prel
M′(µ1)(w↓n) almost surely does not converge to 1. This implies that651

P{ρ′ ∈ Path(M′(µ′0)) | ρ � ρ′ ∧ O(ρ′) ∈ DAA} = 0.652

This result establishes that the BSCC of M′ are partitionned between the ones that653

accurately approximately and almost surely disclose the relevance and the ones that do654

not accurately approximately disclose it at all. Moreover, one can detect in PTIME (in655

the size of the original oMCM) what kind of BSCC a given state belongs to. Therefore,656

one can obtain the value of DiscAA(M′(µ′0)) by computing the probability to reach the657

disclosing BSCC, which is known to be possible in PTIME in the size of M′. In fact, as658

computing this probability amount to solve a linear system of equations, this can even659

be done in NC [12, 21]. The oMC M′ being exponential in the size of M, and as NC660

blown up to the exponential is equal to PSPACE [11], this yields a PSPACE algorithm. As661

DiscAA(M(µ0)) = DiscAA(M′(µ′0)), this allows us to solve the AA-disclosure problem.662

We now establish the hardness by reducing the universality problem for non-deterministic663

finite automaton (NFA), which is known to be PSPACE-complete [20].664

Let A = (Q,Σ, T, q0, F ) be an NFA (Q is the set of states, q0 the initial one, F the set of665

accepting states, Σ the alphabet and T ∈ Q× Σ×Q the transition function). W.l.o.g. we666

can assume that F = Q and Σ = {a, b}. Our first step is to push the observations onto the667

states (as shown in Figure 4). From A we define the incomplete oMC Â = (SA, pA, OA) and668

the initial distribution µA0 such that:669

SA = Q× Σ;670

for (q, c), (q′, d) ∈ SA, if (q, d, q′) ∈ T , then pA((q′, d) | (q, c)) = 1
|SA|+1 , else pA((q′, d) |671

(q, c)) = 0;672

for (q, c) ∈ SA, OA(q, c) = c;673

for (q′, d) ∈ SA, if (q0, d, q
′) ∈ T , then µA0 (q′, d) = 1

|SA|+1 , else µ
A
0 (q′, d) = 0.674

This oMC is incomplete as none of the distributions µA0 and pA(· | s) (for s ∈ SA) sum to 1.

A :
q2

Â :
a

(q2. a)

b

(q2. b)
a, b

1
4

1
4

Figure 4 From NFA A to incomplete oMC Â. The label next to the state is its name. We will
not always display the state’s name so as not to overload the figure.

675

We now build the oMCM = (S, p,O) represented in Figure 5 where676

S = SA ∪ {s], fa, fb, f]};677

given s, s′ ∈ SA, p(s′ | s) = pA(s′ | s), p(s] | s) = 1 −
∑
s′∈SA p(s

′ | s), for h ∈ {fa, fb}678

and g ∈ {fa, fb, f]}, p(g | h) = 1/3 and p(f] | f]) = p(s] | s]) = 1;679

for s ∈ SA, O(s) = OA(s), O(s]) = O(f]) = ], O(fa) = a and O(fb) = b.680

We also define µ0 as µ0(s) = µA0 (s) for s ∈ SA and µ0(fa) = µ0(fb) =
1−

∑
s∈SA

µ0(s)
2 .681

Choosing Sr = {fa, fb, f]}, let us show that A is not universal iff DiscAA(M(µ0)) > 0.682

Suppose first that A is not universal. There thus exists a word w ∈ Σ∗ such that683

no path starting in SA has observation sequence w. As there exists one relevant path684
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a

fa

b

fb

]

f]

s

]

s]

1

1/31/3

1/3

1/3

1/3

1/3
1

Â

Figure 5 A reduction for PSPACE-hardness of the AA-disclosure problem.

ρ (starting in either fa or fb) associated to w], we have Prel
M(µ0)(w]) = 1. Therefore685

DiscAA(M(µ0)) ≥ PM(µ0)(ρ) > 0.686

Conversely, assume that A is universal. Let ρ be a path ending in f] with observation687

sequence O(ρ) = w] for some w ∈ Σ∗. As A is universal, there exists a finite path ρ′ in Â688

with observation sequence w. As for every state s of Â, p(s] | s) > 0, ρ′ can be extended689

into a finite path ρ′′ ending in s] with observation w]. Thus, Prel
M(µ0)(w]) < 1. Moreover,690

every path ending with a ] remains with probability 1 in either s] or f], due to this for every691

k ≥ 2, Prel
M(µ0)(w]k) = Prel

M(µ0)(w]). Therefore, w]ω 6∈ DAA. This implies that no infinite692

path visiting f] corresponds to an AA-disclosing observation sequence. f] being the only693

relevant state, DiscAA(M(µ0)) = 0. J694

C The AA-disclosing observation sequence do not depend on the695

strategy in WMCs696

I Lemma 14. Given M a WMC, µ0 an initial distribution, Sr ⊆ S, σ, σ′ two strategies and697

w an observation sequence produced by at least one path of Mσ(µ0) and one path of Mσ′(µ0),698

then Prel
Mσ′ (µ0)(w) = Prel

Mσ(µ0)(w).699

Proof. LetM be aWMC, µ0 be an initial distribution, σ be a strategy and w = o0Σ0 . . .Σn−1on700

be an observation sequence produced by at least one path of Mσ(µ0). By definition of w,701

Prel
Mσ(µ0)(w) is defined and in particular

∏n−1
i=0 σ(K(w↓2i+1))(Σi) 6= 0. We have702

Prel
Mσ(µ0)(w) =

PMσ(µ0)({ρ ∈ O−1(w) | ρ ∈ Rel})
PMσ(µ0)(w)703

=
∑
ρ∈O−1(w)|ρ∈Rel PMσ(µ0)(ρ)∑

ρ∈O−1(w) PMσ(µ0)(ρ)704

=
∑
ρ=s0Σ0...sn∈O−1(w)|ρ∈Rel

∏n−1
i=0 σ(K(w↓2i+1))(Σi)p(si+1 | si,Σi)∑

ρ=s0Σ0...sn∈O−1(w)
∏n−1
i=0 σ(K(w↓2i+1))(Σi)p(si+1 | si,Σi)

705

=
∑
ρ=s0Σ0...sn∈O−1(w)|ρ∈Rel

∏n−1
i=0 p(si+1 | si,Σi)∑

ρ=s0Σ0...sn∈O−1(w)
∏n−1
i=0 p(si+1 | si,Σi)

706

707
708
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which is independent of σ, therefore for any strategy σ′ such that at least one path of Mσ′(µ0)709

produces w, Prel
Mσ′ (µ0)(w) = Prel

Mσ(µ0)(w). J710

D Deterministic strategies for AA-diagnosability711

I Lemma 19. Given M a WMC, µ0 an initial distribution, Sr ⊆ S and σ a strategy,712

there exists a deterministic strategy σ′ such that DiscAA(Mσ(µ0)) = PMσ(µ0)(Rel) implies713

DiscAA(Mσ′(µ0)) = PMσ′ (µ0)(Rel).714

Proof. In the proof of Lemma 1 of [16], the authors show that a randomised ‘observation715

based’ strategy can be seen as an average over a family of deterministic ‘observation based’716

strategies3. A consequence of their equation (2) in our framework is the following: given717

a strategy σ, for every set of path E, there exists a deterministic strategy σdet such that718

(a) Path(Mσdet(µ0)) ⊆ Path(Mσ(µ0)) and (b) PMσdet (µ0)(E) ≥ PMσ(µ0)(E). Using this result719

with the appropriate set E we will show that if Mσ(µ0) is AA-diagnosable then Mσdet(µ0) is720

AA-diagnosable.721

We define Eσ = VMσ(µ0) ∪ (Path(Mσ(µ0)) \ Rel) which are the set of σ-compatible paths722

that are either not relevant or AA-disclosing. Let σdet be the strategy obtained by applying723

the result of [16] on the set Eσ. Suppose Mσ(µ0) is AA-diagnosable. By definition, this724

is equivalent to PMσ(µ0)(Eσ) = 1. Due to (b), this implies that PMσdet (µ0)(Eσ) = 1 too.725

Moreover VMσdet (µ0) = VMσ(µ0) ∩ Path(Mσdet(µ0)), thanks to Lemma 14 and (a). Thus726

Eσ = VMσdet (µ0) ∪ (VMσ(µ0) \ Path(Mσdet(µ0)) ∪ (Path(Mσ(µ0)) \ Rel)727

= Eσdet ∪ (VMσ(µ0) ∪ (Path(Mσ(µ0)) \ Rel) \ Path(Mσdet(µ0))728
729

where Eσdet = VMσdet (µ0) ∪ (Path(Mσdet(µ0)) \ Rel).730

Finally, PMσdet (µ0)(VMσ(µ0) ∪ (Path(Mσ(µ0)) \ Rel) \ Path(Mσdet(µ0)) = 0 as no path of731

this set is σdet-compatible. Therefore PMσdet (µ0)(Eσdet) = 1 which implies that Mσdet(µ0) is732

AA-diagnosable. J733

E Maximisation of the AA-disclosure734

Recall first that a probabilistic automata (PA) is a tuple A = (Q, q0,Σ, T, F ) where Q is a735

finite set of states with q0 ∈ Q the initial state, Σ is a finite alphabet (which cumulates the736

role of the actions in the oMDP and of the observation), T : Q×Σ→ Dist(Q) is the transition737

function and F ⊆ Q is the set of final states. We define paths for PA as usual and for a finite738

path ρ = q0a1q1 . . . anqn of A, the word a1 . . . an ∈ Σ∗ is called the trace of ρ and denoted by739

tr(ρ). Writing FPath(w,q)(A) = {ρ ∈ FPath(A) | tr(ρ) = w and last(ρ) = q} for w ∈ Σ∗ and740

q ∈ Q, we define PA(w, q) = PA(∪ρ∈FPath(w,q)(A)Cyl(ρ)), PF
A(w,F ) =

∑
q∈F PA(w, q) and741

Val(A) = supw∈Σ∗ PA(w,F ).742

Given a threshold θ ∈ (0, 1), we set L>θ(A) = {w ∈ Σ∗ | PA(w,F ) > θ}. The strict743

emptiness problem for A consists in asking whether L>θ is empty, and is known to be744

undecidable for θ > 0 [22]. The value 1 problem, i.e. asking whether val(A) = 1, is745

undecidable as well [18].746

I Theorem 26. The maximal AA-disclosure problem is undecidable. The maximal limit-sure747

disclosure problem is undecidable.748

3 In our framework, by definition, every strategy is ‘observation based’.
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Proof. These results are obtained by reductions from the strict emptiness problem and value749

1 problem on probabilistic automata. As a consequence, we first need a method to adapt a750

given probabilistic automaton to our framework. This transformation bears many similarities751

with what was done for NFA in the beginning of Theorem 11. For simplicity, we use states752

without observations (denoted by the observation ε), this is without loss of generality as we753

could remove them using a simple probabilistic closure since no non-deterministic choice754

occurs within them.755

Given a probabilistic automaton A = (Q, q0, {a, b}, T, F ) over {a, b} that we suppose756

complete (i.e. T (q, c) is defined for all q ∈ Q and c ∈ {a, b}) without loss of generality,757

we first transform A into an incomplete oMDP Â = (Q̂, {e}, p̂, Ô) over the observation758

alphabet {a, b} where the observations are pushed from the transitions to the next state (an759

illustration is given in Figure 6). The set of states is Q̂ = Q ∪ {qc | q ∈ Q ∧ c ∈ {a, b}}. The760

observation function Ô is defined by Ô(q) = ε and Ô(qc) = c for q ∈ Q and c ∈ {a, b}. The761

transition function p̂ is defined for q, q′ ∈ Q and c ∈ {a, b} by p̂(q′ | qc, e) = T (q′ | q, c) and762

p̂(qc | q, e) = 1
4 . This oMDP is incomplete as the probabilities do not sum to 1. Intuitively,763

a letter to read is chosen at random, and then the transition is taken according to the764

probabilities induced by the chosen letter. Remark that the strategy do not make any choice765

here.766

A :

q

q2

q1

q3

Â :

εq

a

qa

b

qb

ε

q1

ε q2

ε

q3

a, 1
2

a, 1
2 b, 2

3

b, 1
3

1
4

1
4

1
2

1
2

2
3

1
3

Figure 6 From PA A to incomplete oMDP Â. The action e labelling each transition is omitted
in the oMDP.

From Â we build the oMDP M = (S, {e, r}, p,O) (represented in Figure 7) where:767

S = Q̂ ∪ {s0, s
u
f , s

u
n, s

u
s} ∪ {szt | z ∈ {m, l}, t ∈ {ε, a, b, ], [}};768

p(q0 | s0, e) = p(qmε | s0, e) = 1/2, for q, q′ ∈ Q̂, p(q′ | q, e) = p̂(q′ | q, e), for q ∈ F, q′ ∈769

Q \ F, p(sun | q, e) = p(suf | q′, e) = 1/2, p(q0 | suf , e) = 1, p(q0 | sun, e) = p(sus | sun, e) = 1/2,770

for z ∈ {m, l}, c, c′ ∈ {a, b}, p(szc | szε, e) = 1/2, p(szc′ | szc , e) = 1/4, p(sz] | szc , e) = 1/2,771

p(sm[ | sm] , r) = p(smε | sm] , r) = 1/2, p(slε | sm] , e) = 1 and p(sl[ | sl], e) = p(slε | sl], e) = 1/2;772

for q ∈ Q̂,O(q) = Ô(q), O(s0) = O(suf ) = O(sun) = ] O(sus ) = [ and for z ∈ {m, l}, t ∈773

{ε, a, b, ], [} O(szt ) = t.774

The set of relevant states is defined as Sr = {sus} and we consider the initial distribution775

µ0 = 1q0 .776

We will show that, for a given threshold λ, there exists a strategy σ such thatDiscAA(Mσ(µ0)) >777

λ/2 iff there exists a word w ∈ {a, b}∗ such that PA(w,F ) > λ.778

Let us first give the intuition behind this construction. The MDP M is composed of three779

parts (upper, middle and lower part of the Figure 7). The upper part mostly imitates the780

behaviour of the PA A on random words, a ] signalling the end of the word. If the run is781
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]

]

] [

ε

a

b

] [

ε

a

b

] [

e

e

e

e

e

e, 1/2

e, 1/2

e, 1/2

e, 1/2
r, 1/2

r, 1/2

e

e, 1/2

e, 1/2

e, 1/2

e, 1/2
e, 1/2

e, 1/2

e, 1/4

e, 1/4

e, 1/4 e, 1/4

Â

e

r

e

e

e

e, 1/4 e, 1/4

e, 1/4

e, 1/4

Figure 7 Reduction from the emptiness problem to the maximal disclosure problem. The square
state corresponds to a final state of A.
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accepting, i.e. if it ended in a final state of tha PA, then the strategy may chose to play e782

in order to reach the secret state, otherwise a new word is read. As the strategy knows in783

which state the system is, it could ‘cheat’ and reach the secret almost surely in the upper784

part. However, the middle and lower parts are used to make this additional knowledge of the785

strategy useless: after reading a word w in the middle part, the strategy chooses between786

the action e and r, using the action r implies that w][ω is not AA-disclosing while using the787

action e makes w][ω AA-disclosing but the run also reaches the lower part ensuring that any788

other observation from then on is not AA-disclosing. In other words, the strategy will have to789

choose a set of words for which it plays e simultaneously in the middle and the upper parts.790

Formally, let us first identify which relevant paths are disclosing with a strategy σ. Let ρ791

be a relevant path with observation w[k for some k ∈ N and w ∈ {a, b, ]}∗. As once reaching a792

state labelled by [, there is no probabilistic behaviour, Prel
Mσ(µ0)(w[) = Prel

M(µ0)(w[k). Thus,793

the infinite observation associated to the unique infinite path extending ρ is AA-disclosing iff794

Prel
M(µ0)(w[) = 1. This happens iff for every path ρ′ such that O(ρ′) = w and last(ρ′) = sm] ,795

σ(ρ′) = e and there does not exist any path ρ′′ such that O(ρ′′) = w and last(ρ′′) = sl]. This796

last condition can also be formulated as the absence of any run which observation is a prefix797

of w, ending in sm] and for which σ selects the action e.798

let λ ∈ R assume that there exists a word w ∈ {a, b}∗ such that PA(w,F ) > λ. We799

define the strategy σ such that given a path with observation w1]w2] . . . wk] such that for all800

i ≤ k,wi ∈ {a, b}∗, if wk = w and both e and r are allowed actions in last(ρ), then σ chooses801

e, otherwise it chooses r if possible. This strategy induces a disclosure greater than λ/2.802

Indeed, in the upper part of the oMDP, in between two occurrences of ] there is a positive803

probability that w is observed. Thus, with probability 1 a word of the form w1]w2] . . . wk]804

such that for all i ≤ k,wi ∈ {a, b}∗, for all i < k,wi 6= w and wk = w will be triggered.805

Moreover, let v be one such word, then, thanks to the choice of the strategy and the remark806

of the previous paragraph, Prel
Mσ(µ0)(v[) = 1. Finally, the probability that a path of the807

upper part of the oMDP, with observation v ends in sun (allowing to trigger [ on the next808

step) is PA(w,F ), thus ensuring that DiscAA(Mσ(µ0)) > λ/2.809

Conversely, assume that there exists a strategy σ such that DiscAA(Mσ(µ0)) > λ/2.810

We define the set of words E = {(w,w′) ∈ {a, b} ∗ ×{a, b, ]}∗ | ∃u ∈ {a, b, ]}∗, w′ =811

u]w] ∧ O−1(w′[) 6= ∅ ∧ Prel
M(µ0)(w′[) = 1}. Relying on the earlier remark on which paths812

are disclosing, we have813

DiscAA(Mσ(µ0)) =
∑

(w,w′)∈E

PMσ(µ0)({ρ ∈ FPath(Mσ(µ0)) | O(ρ) = w′[})814

≤
∑

(w,w′)∈E

PMσ(µ0)({ρ ∈ FPath(Mσ(µ0)) | O(ρ) = w′ ∧ last(ρ) = sun})815

=
∑

(w,w′)∈E

PMσ(µ0)(w′) · 1/2PA(w,F )816

≤1/2 max
(w,w′)∈E

PA(w,F )817

818

Therefore, DiscAA(Mσ(µ0)) > λ/2 implies that there exists w such that PA(w,F ) > λ.819

This equivalence directly shows that the maximal AA-disclosure problem is undecidable.820

For the maximal limit-sure disclosure, one can use the same reduction with one additional821

secret state with observation \ (thus disclosing) which is reached with positive probability822

from any state smc with c ∈ {a, b}. This means that the longer we wait before selecting a word,823

the higher the probability that a path that went to the middle part is AA-disclosing. However,824

the remaining paths are enough to guarantee the same reasoning as before for the paths825
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going to the upper part, thus showing undecidability of maximal limit-sure disclosure. J826

I Theorem 27. The maximal almost-sure AA-disclosure problem is in PTIME.827

Proof. GivenM an oMC, let us show that DiscAA(M(µ0)) = 1 iff PM(µ0)(Rel) = 1.828

First, DiscAA(M(µ0)) ≤ PM(µ0)(Rel) by definition, thus if DiscAA(M(µ0)) = 1 then829

PM(µ0)(Rel) = 1.830

Conversely, suppose that DiscAA(M(µ0)) < 1, there thus exists a set of infinite ob-831

servations Eo that are not AA-disclosing and such that PM(µ0)(O−1(Eo) ∩ Rel) > 0.832

By definition of AA-disclosing, there thus exists ε > 0 such that there exists a sub-833

set of Eo, denoted Eε, of infinite observations for which none of their prefixes are ε-834

disclosing and PM(µ0)(O−1(Eε) ∩ Rel) = λ > 0. By definition of Prel, this implies that835

PM(µ0)(O−1(Eε) \ Rel) > λε
(1−ε) . Therefore, P(Rel) < 1− λε

(1−ε) < 1.836

Given M an oMDP, M is thus almost-surely AA-disclosing iff there exists a strategy σ837

such that PMσ(µ0)(Rel) = 1. As Rel is defined by the reachability of a set of states, this is838

equivalent to almost-sure reachability in MDP which is known to be in PTIME. J839

F Minimal disclosure840

I Theorem 28. The minimal almost-sure and the minimal limit-sure AA-disclosure decision841

problems are undecidable.842

Proof. Given a probabilistic automaton A = (Q, {a, b}, q0, T, F ) over {a, b} we first transform843

A into an incomplete MDP Â = (Q̂, {e}, p̂, Ô) as in the proof of Theorem 26.844

From Â we build the MDP M = (S, {e, c, l}, p,O) (represented in Figure 8) where:845

S = Q̂ ∪ {s0, s
1
0, s

1
a, s

1
b , s

1
1, s

1
[ , s

1
] , s

2
f , s

2
u, s

2
[ , s

2
]},846

p(q0 | s0, e) = p(s1
0 | s0, e) = 1

2 . For q1, q2 ∈ Q̂, p(q2 | q1, e) = p̂(q2 | q1, e). For q ∈ Q, if847

q ∈ F then p(s2
f | q, e) = 1

2 else p(s2
u | q, e) = 1

2 . p(s
1
a | s1

0, e) = p(s1
b | s1

0, e) = 1/2, p(s1
a |848

s1
a, e) = p(s1

a | s1
b , e) = p(s1

b | s1
a, e) = p(s1

b | s1
b , e) = 1/4, p(s1

1 | s1
a, e) = p(s1

1 | s1
b , e) =849

1/2. p(s2
[ | s

2
f , e) = p(s2

] | s2
u, e) = 1, p(s1

] | s1
1, l) = 1, p(s1

] | s1
1, c) = p(s1

f lat | s1
1, c) = 1

2 .850

p(q0 | s2
] , e) = p(q0 | s2

[ , e) = p(s1
0 | s1

] , e) = p(s1
0 | s1

[ , e) = 1. Undefined transitions have851

value 0.852

O(q) = Ô(q) for q ∈ Q̂, O(sid) = d for i ∈ {1, 2} and d ∈ {[, ], a, b}, O(s0) = O(s1
0) = ε853

and O(s) = ] otherwise.854

We consider the initial distribution µ0 = 1s0 and the set of relevant states Sr = Q̂ ∪855

{s2
f , s

2
u, s

2
[ , s

2
]} (i.e. the upper component of the system). We will show that DiscAA

min(M) > 0856

iff there exists a word w such that PA(w) > 1
2 .857

The idea of the proof is the following. During the first transition one goes with same858

probability in s1
O or q2

0 (lower and upper systems of the Figure 8. Then, on both side a word859

w ∈ (a+ b)∗ is read with same probability, a ] marking the end of the word. On the upper860

side, this ] is followed by a [ with probability PA(w) and by a ] otherwise. On the lower side,861

a [ is read with a probability chosen by the controller between 0 and 1
2 and a ] otherwise.862

Therefore, the controller can reproduce the same probability on both side of the system863

(and thus give no information to the observer) iff the acceptance probability of w in A is864

between 0 and 1
2 . The execution then starts again from the initial state of both copies of the865

automaton.866

More formally, suppose that there exists a word wd ∈ {a, b}∗ such that PA(wd) > 1
2 .867

Given a finite observation w ∈ Σ∗, we define the value ratiowd(w) as the ratio between868

the number of occurrence of (]+ [)wd][ over the number of occurrence of (]+ [)wd] in ]w.869
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This definition is extended to infinite observations by taking the limit, when defined, of870

the ratios of its finite prefixes. Let σ be any strategy. We define the set of observations871

E = {w ∈ Σω | ratiowd(w) > 1/2}. Thanks to the weak law of large numbers and by choice872

of wd, we have that PMσ(1s0eq0 ) = 1 and PMσ(1s0es10
) = 0. As from the initial state, a path of873

Mσ(µ0) goes either in s0eq0, becoming a relevant path, or s0es
1
0, from which it can never874

become relevant, this implies that with probability 1, a relevant path has an observation875

belonging to E. Let us show that these relevant paths are almost surely AA-disclosing which876

will imply that DiscAA
min(M(µ0)) = 1

2 .877

]

]

]

]

[

ε

a

b

]

[

]

e

e

e

e

e

e

e, 1/2

e, 1/2

e, 1/2

e, 1/2 l | c, 1/2

c, 1/2

Â

e

e

e

e

e, 1/4 e, 1/4

e, 1/4

e, 1/4

Figure 8 Reduction from the emptiness problem to the minimal almost-sure disclosure problem.
The square state corresponds to a final state of A.

For every n ∈ N, let Sn be the set of prefixes of length n of the observations of E:878

Sn = {σ ∈ Σn
o | ∃σ′ ∈ E, σ � σ′}. For every ε > 0, we also define Sε

n as the subset of Sn879

consisting of observations whose proportion of relevant paths exceeds threshold 1 − ε in880

M(µ0): Sε
n = {σ ∈ Sn | Prel

M(µ0)(σ) < 1− ε}.881

From
⋂
n∈N Cyl(Sn) = E, we derive that limn→∞PMσ(1s0es10

)(Sn) = PMσ(1s0es10
)(E) = 0.882

Thus limn→∞PMσ(1s0es10
)(Sε

n) = 0.883
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On the other hand, for every n ∈ N,884

PMσ(1s0es10
)(Sε

n) =
∑
σ∈Sεn

PMσ(1s0es10
)(σ) >

∑
σ∈Sεn

ε

1− εPMσ(1s0eq0 )(σ) = ε

1− εPMσ(1s0eq0 )(Sε
n) .885

Since ε is fixed, PMσ(1s0eq0 )(Sε
n) < 1−ε

ε PMσ(1s0es10
)(Sε

n) and limn→∞PMσ(1s0es10
)(Sε

n) = 0886

imply that limn→∞PMσ(1s0eq0 )(Sε
n) = 0. This implies that with probability 1, a path whose887

observation belongs to E is ε-disclosing. As this holds for every ε > 0, from Proposition 8,888

we deduce that the infinite paths with observations in E are almost surely AA-disclosing.889

Conversely, suppose that every word w ∈ {a, b}∗ verifies PA(w) = λ ≤ 1
2 . We define the890

strategy σ such that after a path ρ ending in s1
1 with an observation ]w1]d1w2]d2 . . . wn]891

where wi is a word of (a+b)∗ and di ∈ {], [}, σ(ρ)(c) = 2.PA(wn) and σ(ρ)(l) = 1−2.PA(wn).892

For every other path, σ chooses the only available action: e. With this choice, for all i ∈ N893

the probability that di is equal to [ for a secret or a non secret path is equal to PA(wn).894

Therefore, for any finite path ρ, Prel
M(µ0)(O(ρ)) = 1/2. Thus DiscAA

min(M(µ0)) = 0.895

Consequently, the minimal almost sure disclosure decision problem is undecidable. J896
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