
Opacity problems in subclasses of timed automata

Abstract. In 2009, Cassez showed that the timed opacity problem,1

where an attacker can observe some actions with their timestamps and2

attempts to deduce information, is undecidable for timed automata.3

Moreover, he showed that the undecidability holds even for subclasses4

such as event-recording automata. In this article, we consider the same5

definition of opacity for several other subclasses of timed automata: with6

restrictions on the number of clocks, of actions, on the nature of time,7

on a new subclass called observable event-recording automata, or on the8

number of observations made by the attacker. We show that opacity can9

mostly be retrieved, except for the notable subclass of one-action timed10

automata, for which undecidability remains.11

1 Introduction12

The notion of opacity [17,13] concerns information leaks from a system to an13

attacker; that is, it expresses the power of the attacker to deduce some secret14

information based on some publicly observable behaviors. If an attacker observ-15

ing a subset of the actions cannot deduce whether a given sequence of actions16

has been performed, then the system is opaque. Time particularly influences the17

deductive capabilities of the attacker. It has been shown in [16] that it is possi-18

ble for models that are opaque when timing constraints are omitted, to become19

non-opaque when those constraints are added to the models.20

Timed automata (TAs) [1] are an extension of finite automata that can mea-21

sure and react to the passage of time, extending traditional finite automata with22

the ability to handle real-time constraints. They are equipped with a finite set23

of clocks that can be reset and compared with integer constants, enabling the24

modeling and verification of real-time systems.25

Related works There are several ways to define opacity problems in TAs, depend-26

ing on the power of the attacker. The common idea is to ensure that the attacker27

cannot deduce from the observation of a run whether it was a private or a public28

run. The attacker in [14] is able to observe a subset Σ0 ⊆ Σ of actions with their29

timestamps. In this context, a timed word w is said to be opaque if there exists a30

public run that produces the projection of w following Σ0 as an observed timed31

word. In this configuration, one can consider the opacity problem consisting of32

determining, knowing a TA A and a set of timed words, whether all words in33

this set are opaque in A. This problem has been shown to be undecidable for34

TAs [14]. This notably relates to the undecidability of timed language inclusion35

for TAs [1]. However, the undecidability holds in [14] even for the restricted class36

of event-recording automata (ERAs) [2] (a subclass of TAs), for which language37

inclusion is decidable. The aforementioned negative results leave hope only if the1

definition or the setting is changed, which was done in three main lines of works.2

First, in [19,20], the input model is simplified to real-time automata [15],3

a restricted formalism compared to TAs. In this setting, (initial-state) opacity4

becomes decidable [19,20].5

Second, in [4], the authors consider a time-bounded notion of the opacity6

of [14], where the attacker has to disclose the secret before an upper bound, using7

a partial observability. This can be seen as a secrecy with an expiration date. In8

addition, the analysis is carried over a time-bounded horizon. The authors prove9

that this problem is decidable for TAs.10

Third, in [8,7], the authors present an alternative definition to Cassez’ opacity11

by studying execution-time opacity : the attacker has only access to the execu-12

tion time of the system, as opposed to Cassez’ partial observations with some13

observable events (with their timestamps). In that case, most problems become14

decidable (see [6] for a survey).15

Orthogonal directions of research include non-interference for TAs, with some16

decidability results [10,11,5], while control was considered in [12]. General secu-17

rity problems for TAs are surveyed in [9].18

Contributions Considering the negative results from [14] we have mainly two19

directions: one can consider more restrictive classes of automata, or one can20

limit the capabilities of the attacker—we address both directions in this work.21

We address here ∃-opacity (“there exists a pair of runs visiting and not visiting22

the private locations set, that cannot be distinguished”), weak opacity (“for any23

run visiting the private locations set, there is another run not visiting it and both24

cannot be distinguished”) and full opacity (weak opacity, with the other direction25

holding as well). Throughout the first part of this paper (Section 5), we choose to26

consider the same attacker settings as in [14] but for subclasses of TAs: first we27

deal with one-clock TAs, then one-action TAs, TAs over discrete time, and a new28

subclass which we call observable ERAs. Then, in the second part (Section 6), we29

change our approach and reduce the visibility of the attacker to a finite number30

of actions occurring at the beginning of the run, on an unrestricted TA. In both31

settings, the attacker knows the TA modeling the system and can observe (some)32

actions, but does never gain access to the values of the clocks, nor knows which33

locations are visited. Their goal is to deduce from these observations whether a34

private location was visited.35

We show that:36

1. The problem of ∃-opacity is decidable for general TAs and thus for the37

subclasses of TAs we consider as well (Section 5.1).38

2. The problems of weak and full opacity are both undecidable for TAs with39

only one action or two clocks (Section 5.2) but are decidable for TAs with40

only one clock (Section 5.3), for unrestricted TAs over discrete time (Sec-41

tion 5.4), and for observable ERAs (Section 5.5).42

3. The problems of weak and full opacity are decidable whenever the attacker43

is restricted to only a finite number of observations (Section 6).44

2

As proof ingredients, we also show that 1) language inclusion is decidable for1

TAs over discrete time (an unsurprising result, of which we could not find a proof2

in the literature) and 2) weak opacity and full opacity are inter-reducible.3

Outline Section 2 recalls necessary preliminaries. Section 3 defines the problems4

of interest. Section 4 introduces common constructions used in Sections 5 and 6.5

Section 5 addresses opacity for subclasses of TAs, while Section 6 reduces the6

power of the attacker to a finite set of observations. Section 7 concludes.7

2 Preliminaries8

We denote by N,Z,Q≥0,R≥0 the sets of non-negative integers, integers, non-9

negative rationals and non-negative reals, respectively.10

We let T be the domain of the time, which will be either non-negative reals11

R≥0 (continuous-time semantics) or naturals N (discrete-time semantics). Unless12

otherwise specified, we assume T = R≥0.13

Clocks are real-valued variables that all evolve over time at the same rate.14

Throughout this paper, we assume a set X = {x1 , . . . , xH } of clocks. A clock15

valuation is a function µ : X→ T, assigning a non-negative value to each clock.16

We write 0 for the clock valuation assigning 0 to all clocks. Given a constant17

d ∈ T, µ + d denotes the valuation s.t. (µ + d)(x) = µ(x) + d, for all x ∈ X. If18

R is a subset of X and µ a clock valuation, we call reset of the clocks of R and19

denote by [µ]R the valuation s.t. for all clock x ∈ X, [µ]R(x) = 0 if x ∈ R and20

[µ]R(x) = µ(x) otherwise.21

We assume ./ ∈ {<,≤,=,≥, >}. A constraint C is a conjunction of inequal-22

ities over X of the form x ./ d, with d ∈ Z. Given C, we write µ |= C if the23

expression obtained by replacing each x with µ(x) in C evaluates to true.24

Timed automata A TA is a finite automaton extended with a finite set of real-25

valued clocks. We also add to the standard definition of TAs a special private26

locations set, which is then used to define the subsequent opacity concepts.27

Definition 1 (TA [1]). A TA A is a tuple A = (Σ,L, `0, Lpriv , Lf ,X, I, E),28

where:29

1. Σ is a finite set of actions,30

2. L is a finite set of locations, `0 ∈ L is the initial location,31

3. Lpriv ⊆ L is a set of private locations, Lf ⊆ L is a set of final locations,32

4. X is a finite set of clocks,33

5. I is the invariant, assigning to every ` ∈ L a constraint I(`) over X (called34

invariant),35

6. E is a finite set of edges e = (`, g, a, R, `′) where `, `′ ∈ L are the source36

and target locations, a ∈ Σ ∪ {ε} (where ε denotes an unobservable action),37

R ⊆ X is a set of clocks to be reset, and g is a constraint over X (called38

guard).39

3

`0

`2

`1
x ≤ 3

x ≤ 2

x ≥ 1
ε

a

b

b

Fig. 1: A TA example

Example 1. In Fig. 1, we give an example of a TA with three locations `0, `11

and `2, three edges, two action {a, b}, and one clock x . `0 is the initial location,2

`2 is the (unique) private location, and `1 is the (unique) final location. `0 has3

an invariant “x ≤ 3” and the edge from `0 to `2 has a guard “x ≥ 1”.4

Definition 2 (Semantics of a TA). Given a TA A =5

(Σ,L, `0, Lpriv , Lf ,X, I, E), the semantics of A is given by the TTS6

TA = (S, s0, Σ ∪ {ε} ∪ R≥0,→), with7

1. S =
{
(`, µ) ∈ L× RX

≥0 | µ |= I(`)
}
,8

2. s0 = (`0,0),9

3. → ⊆ S × E × S ∪ S × R≥0 × S consists of the discrete and (continuous)10

delay transition relations:11

(a) discrete transitions: ((`, µ), e, (`′, µ′)) ∈ →, and we write (`, µ) e7→ (`′, µ′),12

if (`, µ), (`′, µ′) ∈ S, e = (`, g, a, R, `′) ∈ E, µ′ = [µ]R, and µ |= g.13

(b) delay transitions: ((`, µ), d, (`, µ+d)) ∈ →, and we write (`, µ)
d7→ (`, µ+14

d), if d ∈ R≥0 and ∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.15

Moreover we write (`, µ)
(d,e)−→ (`′, µ′) for a combination of a delay and discrete16

transition if ∃µ′′ : (`, µ) d7→ (`, µ′′)
e7→ (`′, µ′).17

Given a TA A with semantic (S, s0, Σ ∪ {ε} ∪ R≥0,→), we refer to the el-18

ements of S as the configurations of A. A (finite) run of A is an alternating19

sequence of configurations of A and pairs of delays and edges starting from20

the initial configuration s0 and ending in a final configuration, of the form21

(`0, µ0), (d0, e0), (`1, µ1), · · · (`f , µn) for some n ∈ N, with `f ∈ Lf and for22

i = 0, 1, . . . n − 1, `i /∈ Lf , ei ∈ E, di ∈ R≥0, and (`i, µi)
(di,ei)−→ (`i+1, µi+1).23

A path of A is a prefix of a run ending with a configuration.24

3 Opacity problems in timed automata25

3.1 Timed words, private and public runs26

Given a TA A and a run ρ = (`0, µ0), (d0, e0), (`1, µ1), · · · , (`n, µn) on A, we say27

that Lpriv is visited in ρ if there exists m ∈ N such that `m ∈ Lpriv . We denote28

by Visitpriv (A) the set of runs visiting Lpriv , and refer to them as private runs.29

Conversely, we say that Lpriv is avoided in ρ if the run ρ does not visit Lpriv .30

4

We denote the set of the runs avoiding Lpriv by Visitpriv (A), referring to them1

as public runs.2

A timed word is a sequence of pairs made of an action and an increasing3

timestamp in R≥0. We denote by TW ∗(Σ) the set of all finite timed words4

on the alphabet Σ. A run ρ on a TA A defines a timed word: if ρ is of5

the form (`0, µ0), (d0, e0), (`1, µ1), · · · , (`n, µn) where for each i ∈ [[0;n − 1]],6

ei = (`i, gi, ai, Ri, `i+1) and ai ∈ Σ ∪ {ε}, then it generates the timed7

word (aj0 ,
j0∑
i=0

di)(aj1 ,
j1∑
i=0

di) . . . (ajm ,
jm∑
i=0

di), where j0 < j1 < · · · < jm and8

{jk | k ∈ [[0;m]]} = {i ∈ [[0;n− 1]] | ai 6= ε}. We denote by Tr(ρ) and call trace9

of ρ the timed word generated by the run ρ and, by extension, given a set of10

runs Ω, we denote by Tr(Ω) the set of the traces of runs in Ω.11

The set of timed words recognized by a TA A is the set of traces generated12

by its runs, Tr(Visitpriv (A) ∪ Visitpriv (A)) (thus a subset of (Σ × R≥0)
∗). To13

shorten these notations, we use Tr(A) for the set of timed words recognized14

by A, also called language of A. Similarly, we use Trpriv (A) = Tr(Visitpriv (A))15

to denote the set of traces of private runs, and Trpriv (A) = Tr(Visitpriv (A)) for16

the set of traces of public runs.17

In Cassez’s original definition [14], actions were partitioned into two sets,18

depending on whether an attacker could observe them or not. For simplicity,19

here we replaced every unobservable transition in A by ε-transitions. Projecting20

the sequence of actions in a run onto the observable actions, as done by Cassez,21

is equivalent to replacing these actions by ε and taking the trace of the run.22

Therefore, with respect to opacity, our model is equivalent to [14].23

3.2 Defining timed opacity24

In this section, a definition of timed opacity based on the one from [14] is intro-25

duced, with three variants inspired by [6]: existential, full and weak opacity. If26

the attacker observes a set of runs of the system (i.e., observes their associated27

traces), we do not want them to deduce whether Lpriv was visited or not during28

these observed runs. Opacity holds when the traces can be produced by both29

private and public runs.30

We are thus first interested in the existence of an opaque trace o ∈ Trpriv (A)∩31

Trpriv (A), that is, a trace that cannot allow the attacker to decide whether it32

was generated by a private or a public run.33

Definition 3 (∃-opacity). A TA A is ∃-opaque if Trpriv (A)∩Trpriv (A) 6= ∅.34

∃-opacity decision problem:
Input: A TA A
Problem: Is A ∃-opaque?

35

Ideally and for a stronger security of the system, one can ask the system to be36

opaque for all possible traces of the system: a TA A is fully opaque whenever for37

any trace in Tr(A), it is not possible to deduce whether the run that generated38

this trace visited Lpriv or not.39

5

Definition 4 (Full opacity). A TA A is fully opaque if Trpriv (A) =1

Trpriv (A).2

Full opacity decision problem:
Input: A TA A
Problem: Is A fully opaque?

3

Sometimes, a weaker notion is sufficient to ensure the required security in4

the system, i.e., when the compromising information solely comes from the iden-5

tification of the private runs.6

Definition 5 (Weak opacity). A TA A is weakly opaque if Trpriv (A) ⊆7

Trpriv (A).8

Weak opacity decision problem:
Input: A TA A
Problem: Is A weakly opaque?

9

Example 2. The TA A depicted in Fig. 1 is ∃-opaque and weakly opaque but
not fully opaque. Indeed,

Trpriv (A) =
{
(a, τ1) . . . (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 2 ∧ τn+1 ≥ 1

}
Trpriv (A) =

{
(a, τ1) . . . (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 3

}
This TA verifies Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ∩ Trpriv (A) 6= ∅ since10

(b, 1.5) ∈ Trpriv (A).11

4 Tools for the analysis of opacity12

Before proving our results in Sections 5 and 6, we recall and adapt a few useful13

tools for TAs and opacity.14

4.1 Apriv and Apub15

First, we need a construction of two TAs Apriv and Apub that recognize timed16

words produced respectively by private and public runs of a given TA A.17

The public runs TA Apub is the easiest to build: it suffices to remove the18

private locations from A to eliminate every private run in the system. (See19

formal definition in Definition 12 in Appendix A.)20

The private runs TA Apriv is obtained by duplicating all locations and transi-21

tions of A: one copy AS corresponds to the paths that already visited the private22

locations set, and the other copy AS̄ corresponds to the paths that did not (this23

is a usual way to encode a Boolean, here “Lpriv was visited”, in the locations24

of a TA). For each private location `priv in A we copy all transitions leading25

to the copy of `priv in AS̄ and redirect them to the copy of `priv in AS . The26

initial location is the one from AS̄ and the final locations are the ones from AS .27

Hence all runs need to go from AS̄ to AS before reaching a final location, which28

requires visiting a private location.29

6

`0 `1
x ≤ 3

a

b

(a) Apub

`0

`2

`1
x ≤ 3

x ≤ 2

`0

`2

`1
x ≤ 3

x ≤ 2

x ≥ 1
εa

b

b

x ≥ 1
εa

b

b

x ≥ 1
ε

(b) Apriv

Fig. 2: Apub and Apriv with the example from Fig. 1

Definition 6 (Private runs TA Apriv).1

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA. The private runs TA2

Apriv = (Σ,LS] LS̄ , `0S̄ , LSpriv , LSf ,X, I ′, E′) is defined as follows:3

1. LS = {`S | ` ∈ L} and LS̄ = {`S̄ | ` ∈ L}.4

2. LSf = {`fS | `f ∈ Lf} is the set of final locations, and LSpriv = {`privS |5

`priv ∈ Lpriv} is the set of private locations;6

3. I ′ is defined such as I ′(`S) = I ′(`S̄) = I(`)7

4. E′ = ES] ES̄] ES̄→S where ES and ES̄ are the two disjoint copies of E8

respectively associated to the sets of locations LS and LS̄, and ES̄→S is a9

copy of the set of all transitions that go toward LS̄priv where the target location10

`priv
S̄ has been changed into `privS. More formally:11

ES =
{
(`S , g, a, R, `′S) | (`, g, a,R, `′) ∈ E

}
ES̄ =

{
(`S̄ , g, a, R, `′S̄) | (`, g, a,R, `′) ∈ E

}
ES̄→S =

{
(`S̄ , g, a, R, `priv

S) | (`, g, a,R, `priv) ∈ E
}
.

Example 3. We illustrate these constructions in Fig. 2 with A from Fig. 1.12

The languages of Apriv and Apub are respectively Trpriv (A) and Trpriv (A).13

Remark 1. By a minor modification on Apriv , one can build a TA Amem that14

recognizes exactly the same language as A and that stores in each location15

whether the private locations set has been visited. To do so, we add the set16

{`f S̄ | `f ∈ Lf} to the set of final locations in Apriv and we remove each `priv S̄ ∈17

LS̄priv from LS̄ in the same way as we did in Apub . Notably, A is weakly (resp.18

fully) opaque if and only if Amem is weakly (resp. fully) opaque.19

7

4.2 Inter-reducibility of weak and full opacity1

While the distinction between weak and full notions of opacity can lead to mean-2

ingful changes [6], within our framework both associated problems are inter-3

reducible.4

Theorem 1. The weak opacity decision problem and the full opacity decision5

problem are inter-reducible.6

Proof. Let us first show that the full opacity decision problem reduces to the7

weak opacity decision problem. Let A be a TA. In order to test whether A is fully8

opaque, we can test both inclusions: Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ⊇9

Trpriv (A). The first inclusion can be decided directly by testing whether A is10

weakly opaque. In order to test the second inclusion, we need to build a TA11

Amem where private and public runs are inverted. To do so, we first build Apub12

and Apriv and then define A′ as the TA constituted of Apub and Apriv as well13

as two new locations `0′ and `priv
′. The location `0

′ is the initial location of14

A′ and `priv
′ is the only private location. For x ∈ X, both `0

′ and `priv
′ have15

the invariant x = 0, ensuring no time may elapse in those locations. From `0
′,16

with a transition labeled by ε, one may reach either the initial location of Apriv17

(`0S) or `priv ′, from which an ε-transition leads to the initial location of Apub18

(`0). The final locations of A′ are the final locations of Apub and Apriv . The19

public runs of A′ are the ones starting in `0
′, going immediately to `0S , and20

then following a run of Apriv until a final location of Apriv is reached. As the21

initial transition is labeled by ε, we have Trpriv (A′) = Trpriv (A). Similarly,22

the private runs of A′ are the ones starting in `0
′, going immediately to `priv ′23

followed immediately by going to `0S , and then follows a run of Apub until a final24

location of Apub is reached. As the two initial transitions are labeled by ε, we25

have Trpriv (A′) = Trpriv (A). Hence, A is fully opaque if and only if A and A′26

are weakly opaque.27

Let us now show the converse reduction. Let A be a TA. We will define a28

TA A′ such that A′ is fully opaque if and only if A is weakly opaque. To do so,29

we want that Trpriv (A′) = Trpriv (A) and Trpriv (A′) = Trpriv (A) ∪ Trpriv (A).30

Indeed, if these equalities hold, Trpriv (A′) = Trpriv (A′) would be equivalent31

to Trpriv (A) = Trpriv (A) ∪ Trpriv (A) which holds if and only if Trpriv (A) ⊆32

Trpriv (A). As for the first reduction, A′ contains a copy of Apub and Apriv as33

well as two new locations `0′ and `priv ′. The location `0′ is the initial location of34

A′ and `priv ′ is the only private location. For x ∈ X, both `0′ and `priv ′ have the35

invariant x = 0, ensuring no time may elapse in those locations. From `0
′, with36

a transition labeled by ε, one may reach either the initial location of Apub (`0S)37

or `priv ′, from which an ε-transition leads either to `0S or to the initial location38

of Apub (`0). The final locations of A′ are the final locations of Apub and Apriv .39

The public runs of A′ are the ones starting in `0′, going immediately to `0, and40

then following a run of Apub until a final location of Apub is reached. As the41

initial transition is labeled by ε, we have Trpriv (A′) = Trpriv (A). Similarly, the42

8

private runs ofA′ are the ones starting in `0′, going immediately to `priv ′ followed1

immediately by going to `0S followed by a run of Apriv , or to `0, followed by a2

run of Apub until a final location ofApub is reached. As the two initial transitions3

are labeled by ε, we have Trpriv (A′) = Trpriv (A)∪Trpriv (A). Hence, A is weakly4

opaque if and only if A′ is fully opaque.5

4.3 Region automaton6

We recall that the region automaton is obtained by quotienting the set of clock7

valuations out by an equivalence relation ' recalled below.8

Given a TA A and its set of clocks X, we define M : X → N the map that9

associates to a clock x the greatest value to which the interpretations of x are10

compared within the guards and invariants; if x appears in no constraint, we set11

M(x) = 0.12

Given α ∈ R, we write bαc and fr(α) respectively for the integral and frac-13

tional parts of α.14

Definition 7 (Equivalence relation ' for valuations [1]). Let µ, µ′ be15

two clock valuations (with values in R≥0). We say that µ and µ′ are equivalent,16

denoted by µ ' µ′ when, for each x ∈ X, either µ(x) > M(x) and µ′(x) > M(x)17

or the three following conditions hold:18

1. bµ(x)c = bµ′(x)c;19

2. fr(µ(x)) = 0 if and only if fr(µ′(x)) = 0;20

3. for each y ∈ X, fr(µ(x)) ≤ fr(µ(y)) if and only if fr(µ′(x)) ≤ fr(µ′(y)).21

The equivalence relation is extended to the configurations of A: let s =22

(`, µ) and s′ = (`′, µ′) be two configurations in A, then s ' s′ if and only if ` =23

`′ and µ ' µ′.24

The equivalence class of a valuation µ is denoted [µ] and is called a clock25

region, and the equivalence class of a configuration s = (`, µ) is denoted [s]26

and called a region of A. Clock regions are denoted by the enumeration of the27

constraints defining the equivalence class. Thus, values of a clock x that go28

beyond M(x) are merged and described in the regions by “x > M(x)”.29

The set of regions of A is denoted by RA. These regions are in finite number:30

this allows us to construct a finite “untimed” regular automaton, the region31

automaton RAA. Locations of RAA are regions of A, and the transitions of32

RAA convey the reachable valuations associated to each configuration in A.33

To formalize the construction, we need to transform discrete and time-34

elapsing transitions of A into transitions between the regions of A. To do that, we35

define a “time-successor” relation that corresponds to time-elapsing transitions.36

Definition 8 (Time-successor relation [7]). Let r = (`, [µ]), r′ = (`′, [µ′]) ∈37

RA. We say that r′ is a time-successor of r when r 6= r′, ` = `′ and for each38

configuration (`, µ) in r, there exists d ∈ R≥0 such that (`, µ+d) is in r′ and for39

all d′ < d, (`, µ+ d′) ∈ r ∪ r′.40

9

A region r = (`, [µ]) is unbounded when, for all x in X, µ(x) > M(x).1

Definition 9 (Region automaton [1]). Given a TA A =2

(Σ,L, `0, Lpriv , Lf ,X, I, E), the region automaton is a tuple RAA =3

(ΣR ,R, r0,Rf , ER) where4

1. ΣR = Σ ∪ {ε};5

2. R = RA;6

3. r0 = [s0];7

4. Rf is the set of regions which first component is a final location `f ∈ Lf ;8

5. (discrete transitions) For every r = (`, [µ]) with ` /∈ Lf , r′ = (`′, [µ′]) ∈ RA9

and a ∈ Σ ∪ {ε}:10

(r, a, r′) ∈ ER if (`, µ) e7→ (`′, µ′′)

with µ′′ ∈ [µ′] and e = (`, g, a,R, `′) ∈ E.11

(delay transitions) For every r = (`, [µ]) with ` /∈ Lf , r′ = (`′, [µ′]) ∈ RA:12

(r, ε, r′) ∈ ER if r′ is a time-successor of r or if r = r′ is unbounded.

As in TAs, a run of RAA is an alternating sequence of regions of RAA13

and actions starting from the initial region r0 and ending in a final region, of14

the form r0, a0, r1, a1, · · · rn−1, an−1, rf for some n ∈ N, with rf ∈ Rf and for15

i ∈ [[0;n − 1]], ri /∈ Rf , and (ri, ai, ri+1) ∈ ER . A path of RAA is a prefix of16

a run ending with a region and the trace of a path of RAA is the sequence of17

actions (ε excluded) contained in this path.18

5 Opacity problems for subclasses of timed automata19

In this section, we consider the decidability status of the three opacity problems20

presented in Section 3 for several subclasses of TAs: TAs with one clock, TAs21

with one action, TAs under discrete time and observable ERAs. We first show22

the decidability of the ∃-opacity problem in the general case. Then, we focus on23

each class of TAs listed above to study weak and full opacity.24

5.1 ∃-opacity problem25

We prove here decidability of the ∃-opacity problem in the general case. We26

establish in the following proof a reduction from the ∃-opacity problem to the27

reachability problem in TAs, which is known to be in PSPACE [1].28

Theorem 2 (Decidability of ∃-opacity). ∃-opacity is decidable for TAs.29

Proof. Let A be a TA. We build Apriv and Apub from A as described in Sec-30

tion 4.1. Noting that the product of two TAs recognizes the intersection of31

their languages [1, Theorem 3.15] (assuming the two TAs share no clock), we32

build the TA Apriv × Apub , product of Apriv and Apub , which language is33

10

Trpriv (A) ∩ Trpriv (A). To build this product, we can rename all clocks from1

Apub so that Apriv and Apub share no clock.2

The ∃-opacity problem is by definition the non-emptiness of the intersection3

of Trpriv (A) and Trpriv (A). Moreover, the reachability of a final location of4

Apriv ×Apub is equivalent to the non-emptiness of the language of Apriv ×Apub ,5

and thus of the set Trpriv (A) ∩ Trpriv (A). Since reachability is decidable in6

PSPACE in TAs [1], the same holds for the ∃-opacity problem.7

5.2 Timed automata with a single action8

Recall that the universality problem consists in deciding whether a TA A accepts9

the set of all timed words. In [18], it is shown that the class of one-action TAs is10

one of the simplest cases for which the universality problem is undecidable among11

TAs. Therefore, this gives the intuition that the weak opacity and full opacity12

problems are undecidable as well for one-action TAs (|Σ| = 1). We establish this13

intuition in this section.14

Theorem 3 (Undecidability of universality in one-action TAs [18]).15

The problem of universality for TAs with one action is undecidable.16

We present in the proof of the following theorem a reduction of the univer-17

sality problem in one-clock TAs to the full opacity problem in the same context.18

Theorem 4 (Undecidability of full opacity in one-action TAs). The full19

opacity problem for TAs with one action is undecidable.20

Proof. Let A be a TA with a single action. We want to build a TA such that21

if we can answer the full opacity problem of this TA, then we can decide the22

universality problem for A. We consider the following TA: we add an initial23

location exited by two ε-transitions that must be taken urgently (i.e., no time24

may elapse before taking them). The first ε-transition leads to a secret location25

which leads (again via an urgent ε-transition) to the initial location of the TA A26

and the other leads to a location where every finite timed words on Σ can be27

read before reaching a final location. We denote this TA B and illustrate its28

construction in Fig. 3. The language recognized by A corresponds exactly to the29

traces of private runs of B, and the traces of public runs of B are all the finite30

timed words on Σ. Therefore, B is fully opaque iff Trpriv (B) = Trpriv (B) iff31

Tr(A) = TW ∗(Σ) iff A is universal. By Theorem 3, we conclude that the full32

opacity problem for one-action TAs is undecidable.33

With Theorem 1, we deduce:34

Corollary 1 (Undecidability of weak opacity in one-action TAs). The35

weak opacity problem for TAs with one action is undecidable.36

Remark 2. The problems of execution-time opacity introduced in [6] are a37

particular decidable subcase of these undecidable opacity problems with one-38

action TAs. Indeed, the execution time is equivalent to a unique timestamp39

associated to the last action of the system.40

11

`0

`priv `fA

`?

x = 0
ε

ε
x = 0

ε
x = 0

a
x ← 0

x = 0
ε

Fig. 3: Automaton B: Reduction from universality to full opacity

In addition, due to the undecidability of language universality for TAs with1

at least two clocks [18, Theorem 21], we can prove the following with the same2

construction as in Theorem 4:3

Theorem 5 (Undecidability of opacity for two-clock TAs). Full and4

weak opacity are undecidable for TAs with ≥ 2 clocks.5

5.3 Timed automata with a single clock6

We now prove that the weak opacity and full opacity problems are both decidable7

in the context of one-clock TAs (|X| = 1) relying on the following result from [18].8

Theorem 6 (Decidability of language inclusion in one-clock TAs [18]).9

The language inclusion problem for one-clock TAs is decidable.10

By definition, a TA is weakly opaque if Trpriv (A) is included in Trpriv (A). As11

Trpriv (A) and Trpriv (A) are respectively recognized by Apriv and Apub , the de-12

cidability of the weak opacity problem is directly obtained from the decidability13

of the inclusion of two languages.14

Theorem 7 (Decidability of weak opacity in one-clock TAs). Weak15

opacity is decidable for one-clock TAs.16

With Theorem 1, we deduce:17

Corollary 2 (Decidability of full opacity in one-clock TAs). Full opacity18

is decidable for one-clock TAs.19

5.4 Timed automata over discrete time20

In the general case, clocks are real-valued variables, with valuations thus ranging21

over T = R≥0. TAs over discrete time however restrict the clock’s behavior to22

valuations over T = N. Since the arguments used in [1] to prove the undecidabil-23

ity of the universality problem in TAs rely on the continuous time, this proof24

cannot be used to establish undecidability of opacity over discrete time. In fact,25

relying on the region automaton (defined in Section 4.3) in discrete time and26

classical results on finite regular automata, we show decidability of the opacity27

problems.28

12

`0 `f

x > 2
a

(a) A

`0 `f

x > 2
∧z = 0

a

z = 1
t

z ← 0

z = 1
t

z ← 0

(b) A completed with “ticks”

`0
x = 0
z = 0

`0
x = 1
z = 1

`0
x = 1
z = 0

`0
x = 2
z = 1

`0
x = 2
z = 0

`0
x > 2
z = 1

`0
x > 2
z = 0

`f
x > 2
z = 0

`f
x > 2
z = 1

ε t ε t ε t

t

ε

ε
a

(c) RAA

Fig. 4: A discrete-time region automaton example

If µ, µ′ are two discrete clock valuations (i.e., with values in N), the definition1

of ' from Section 4.3 can be simplified into: µ ' µ′ if and only if for each x ∈ X,2

either µ(x) = µ′(x) or µ(x) > M(x) and µ′(x) > M(x).3

Over continuous time, for each run of the TA, there is a unique corresponding4

run of the region automaton. Over discrete time, thanks to the simplified form5

of the definition of ', the converse statement that a run of the region automaton6

corresponds to a unique run of the TA nearly holds. Loss of information however7

remains when every clock goes beyond their maximum constant, as time elapsing8

is not measured beyond this point. In order to measure it, we add a letter t for9

“tick” which occurs each time that an (integral) time unit passes in the region10

automaton. This change can be operated directly on the TA A so that the11

correspondence between paths of A and RAA becomes immediate.12

More precisely, we add a clock z and add self-loop transitions et = (`, (z =13

1), t, {z}, `) on each location ` ∈ L of A. We also add the guard “z = 0” to each14

discrete transition of A.15

We illustrate the resulting TA on a simple example in Fig. 4. We depict a16

discrete-time TA A, its transformation by the procedure we just described and17

finally its region automaton RAA (over discrete time).18

With this construction, time information become superfluous in the TA as it19

can be deduced from the number of ticks that were produced, which also appears20

within a path of the region automaton. For instance, consider the run on the A21

of Fig. 4a that remains four time units in `0 before going to `f . The timed word22

(a, 4) on the original TA A becomes (t, 1)(t, 2)(t, 3)(t, 4)(a, 4) in our transformed23

TA. The untimed word obtained in RAA is tttta, which means that four “ticks”24

occurred before the action a was produced. From this information, the original25

timed word (a, 4) can be reconstructed. In the rest of this subsection, we only26

consider TAs enhanced with ticks. From the previous discussion, we have:27

13

Lemma 1. The language of a discrete-time TA and the language of its region1

automaton are in bijection.2

Thus, we show that the language inclusion problem for discrete-time TAs can3

be reduced to its decidable equivalent for finite regular automata. This result is4

not surprising—yet, we could not find its occurrence in the literature.5

Proposition 1 (Decidability of language inclusion in discrete-time6

TAs). Language inclusion in discrete-time TAs is decidable.7

We can then adapt this result to the weak and full opacity problems in a8

similar way as done in Section 5.3.9

Theorem 8 (Decidability of weak and full opacity in discrete-time10

TAs). Weak and full opacity are decidable for discrete-time TAs.11

5.5 Observable Event-Recording Automata12

In [14], the opacity problems were shown to be undecidable for Event-Recording13

Automata (ERAs) [2], a subclass of TAs where every clock x is associated to a14

specific event ax and x is reset on a transition iff this transition is labeled by ax.15

Due to this, the valuations of clocks are entirely determined by the duration16

since the last occurrence of the associated events. One of the main interest of17

ERAs is that they are determinizable [2]. This determinization is carried out18

through the standard subset construction.19

The undecidability result from [14] on ERAs required to make the events ax20

unobservable. Hence, in our framework they would be replaced by ε-transitions.21

We define observable ERAs (oERAs) as ERAs where the actions resetting the22

clocks must be observable. This means that the information required for the23

determinization now belongs to the trace that is observed.24

Given an oERA A, we can thus build through the subset construction a TA25

DetA such that any path ρ in A corresponds to a path ρD in DetA with the26

same trace and ending in a location labeled by the set of all the locations of A27

that can be reached with a run that has the same trace as ρ. This information,28

combined with the construction of Amem (Remark 1) which stores in the state29

of the TA whether the private location was visited or not, directly provides the30

following result.31

Theorem 9 (Decidability of the opacity problems in oERAs). Weak32

and full opacity are decidable for oERAs.33

6 Opacity after a finite number of observations34

One of the causes for the undecidability of the opacity problems in [14] stems35

from the unbounded memory the attacker might require to remember a run of36

the TA. As a consequence, one can wonder whether the opacity problems remain37

14

`0
0

`i
0

`j
0

A0

`f
0

`k
1 A1

`f
1

. . . `N AN

`f
N

ε

a1
x1 ← 0 aN

xN ← 0

Fig. 5: Partially unfolded TA

undecidable when the attacker performs only a finite number of observations. In1

this section, we prove that the weak and full opacity problems become decidable2

whenever, given N ∈ N, the attacker only observes the first N actions (with3

their timestamps).4

For instance, if (a, 1.2)(b, 1.4)(b, 1.5)(a, 2.1) is the trace of a public run of the5

system, and N = 2, then the attacker only observes the trace (a, 1.2)(b, 1.4).6

If (a, 1.2)(b, 1.4)(c, 1.6) is the trace of a private run, the trace observed by the7

attacker is (a, 1.2)(b, 1.4) again and the attacker cannot conclude a private run8

occurred or not.9

Formally, and in order to define new variants of opacity representing this10

framework, given a TAA, we define a new TA (depicted in Fig. 5) which emulates11

the behavior of A up to the Nth observation. This TA is an unfolding of A with12

N+1 copies of A, where ε-transitions are taken within each copy, and transitions13

with an observable action lead to the next copy. A run ends when either a final14

location or the final copy is reached.15

Additionally, and in order to prepare our proof, we directly enrich this TA16

with ticks. In Section 5.4, we added a single tick to the automaton which counted17

the time elapsed since the start of the run. Here, the TA includes as well, for each18

i < N , a tick counting the time elapsed since the ith observation. As multiple19

ticks may need to occur at the same time, we develop the alphabet of ticks to20

describe the set of tick clocks that need to be reset, i.e., the tick t{i1,...,im} is21

produced by the TA if for every j, the ijth observation (or the start of the run22

if ij = 0) occurred an integer number of time units beforehand. Note that the23

addition of these ticks immediately uses the assumption that only N actions are24

observed.25

Definition 10 (N-observations unfolding of a TA).26

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA and let N ∈ N. We call N -27

unfolding of A the TA UnfoldN (A) = (Σ′, L′, `0
0, L′priv , L

′
f ,X′, I ′, E′) where28

1. Σ′ = Σ ∪Σ0 ∪Σt where Σ0 = {a0 | a ∈ Σ} is a copy of the alphabet Σ that29

is used to represent within the action’s name that it occurred at the same30

time as the previous action, and Σt = {tK | K ⊆ [[0;N]]} is the set of “ticks”31

associated to each set of added clocks;32

2. L′ =
N⋃
i=0

Li where the sets Li are N + 1 disjoint copies of L where each33

location ` ∈ L has been renamed `i ∈ Li: for 0 ≤ i ≤ N , Li = {`i | ` ∈ L};34

3. `00 ∈ L0 is the initial location;35

15

4. L′priv =
N−1⋃
i=0

Lipriv where Lipriv are the copies within Li of the private locations1

of A;2

5. L′f = (
N⋃
i=0

Lif)∪LN where Lipriv are the copies within Li of the final locations3

of A;4

6. X′ = X ∪ {xi | i ∈ [[0;N]]}, the original clocks to which N + 1 clocks5

(x0, . . . , xN+1) were added for ticks;6

7. I ′(`i) = I(`) for l ∈ L and i ≤ N extends I to each Li;7

8. E′ =
N−1⋃
i=0

Ei ∪ Ei→i+1 is the set of transitions where, given 0 ≤ i < N8

– Ei = {(`i, ε, g ∧
i∧

k=0

(xk < 1), R, `′i) | (`, ε, g, R, `′) ∈ E} ∪9

{(`i, tK ,
∧
k∈K

(xk = 1) ∧
∧

m∈[[0;i]]\K
(0 < xm < 1), {xk | k ∈ K}, `i) | `i ∈10

Li ∧K ⊆ [[0; i]]};11

– Ei→i+1 = {(`i, a0, g ∧
i∧

k=0

(xk < 1) ∧
i∨

m=0
(xm = 0), R ∪ {xi+1}, `′i+1) |12

(`, a, g, R, `′) ∈ E∧a ∈ Σ}∪{(`i, a, g∧
i∧

k=0

(0 < xk < 1), R∪{xi+1}, `′i+1) |13

(`, a, g, R, `′) ∈ E ∧ a ∈ Σ}.14

Definition 11 (Opacity w.r.t. N observations). Let A be a TA and let15

N ∈ N. We say that A is weakly (resp. fully) opaque w.r.t. N observations when16

UnfoldN (A) is weakly (resp. fully) opaque.17

Theorem 10. The problem of deciding, given a TA A and N ∈ N, whether A18

is weakly (resp. fully) opaque w.r.t. N observations is decidable.19

The rest of the this section is devoted to the proof of Theorem 10.20

As in Section 5.4, the goal is to rely on the region automaton to translate the21

opacity problems from the TA to another problem on a finite automaton. Let22

A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA and let N ∈ N. Before unfolding A, we23

replace it by the TA Amem described in Remark 1. Recall that Amem recognizes24

the same language as A but stores within the locations the information whether25

Lpriv was visited. As such, Amem has the same opacity properties as A, so we26

can consider UnfoldN (Amem) instead of UnfoldN (A) to study the opacity of A.27

LetRAUnfoldN (Amem) be the region automaton of UnfoldN (Amem). Thanks to28

the added ticks, paths of RAUnfoldN (Amem) sharing the same trace correspond to29

runs of A for which the (at most) N observations occurred within the same time30

intervals (due to the tick representing the total time) and the fractional part of31

the timing of those observations have the same order. This is the information we32

mainly need, and thus we wish to regroup every path of the region automaton33

with the same trace. As the region automaton is a finite automaton, we can real-34

ize usual operations on it, that is, first remove ε-transitions (by fusing them with35

the following non-ε-transition) and then determinizing the automaton through1

16

the subset construction. We denote by B(A) the resulting automaton. We call be-2

liefs the states of B(A), i.e., they describe the set of regions the attacker believes3

the system may be in.4

Let B be a belief of B(A) and Bpriv (resp. Bpub) be the subset of B containing5

the regions which associated location in Amem is private (resp. public) and final.6

We say that B is weakly (resp. fully) discriminating if Bpriv 6= ∅ and Bpub = ∅7

(resp. if either Bpriv 6= ∅ and Bpub = ∅ or Bpriv = ∅ and Bpub 6= ∅). The8

discriminating belief in B(A) allows to characterize the opacity problems.9

Proposition 2 (Relation between opacity and discriminating belief).10

A TA A is weakly (resp. fully) opaque w.r.t. N observations iff B(A) does not11

contain any weakly (resp. fully) discriminating belief.12

Proof. We focus on weak opacity, full opacity case can be treated similarly.13

– Assume first that B(A) contains a weakly discriminating belief B. Let r be14

a region in Bpriv and w be the trace of a path leading from the initial belief15

of B(A) to B. By construction of the region automaton, there exists a run16

ρ of UnfoldN (Amem) whose untimed trace (i.e., the trace of ρ projected on17

the actions) is w and such that the run corresponding to ρ in the region18

automaton ends in r. In particular, ρ is a private run. Moreover, any run19

whose untimed trace is w ends in a region of B. Thus, there is no public run20

with trace w and in particular Tr(ρ) ∈ Trpriv (UnfoldN (Amem)) and Tr(ρ) ∈21

Trpriv (UnfoldN (Amem)), hence UnfoldN (Amem) is not weakly opaque and22

A is not weakly opaque w.r.t. N observations.23

– Assume now that A is not weakly opaque w.r.t. N observations. Let ρ be24

a run of UnfoldN (Amem) such that Tr(ρ) ∈ Trpriv (UnfoldN (Amem)) and25

Tr(ρ) 6∈ Trpriv (UnfoldN (Amem)). Let [ρ] be the run corresponding to ρ in26

the region automaton.1 We denote by T ([ρ]) the set of traces of runs of27

UnfoldN (Amem) associated to [ρ].28

Lemma 2. Denoting w = a1, . . . am the trace of [ρ], T ([ρ]) contains exactly29

the words (a1, τ1) . . . (am, τm) satisfying the following constraints:30

1. ∀i ∈ [[1;m]], (ai ∈ Σ∪Σt =⇒ τi−τi−1 > 0)∧(ai ∈ Σ0 =⇒ τi−τi−1 = 0)31

(where τ0 = 0), meaning that only the actions of Σ0 can be made without32

any delay.33

2. ∀i, j ∈ [[0;m]],∀k ∈ [[i + 1; j − 1]],∀J,K ⊆ [[0;N]],∀I ⊆ J, (i < j ∧ ai =34

tI ∧ aj = tJ ∧ (ak = tK =⇒ K ∩J = ∅)) =⇒ τj − τi = 1, meaning that35

two successive ticks of the same clocks are separated by exactly 1 time36

unit.37

3. ∃i ∈ [[1;m]],∃I ⊆ [[0;N]]∀j ≤ i,∀J ⊆ [[0;N]], ai = tI ∧ 0 ∈ I ∧ τi =38

1 ∧ (aj = TJ =⇒ 0 6∈ J), meaning that the first occurrence of the tick39

of the clock x0 is at time 1.1

1 The notation [·] represents that [ρ] implicitly defines an equivalence class of runs of
UnfoldN (Amem). For a run ρ′ of UnfoldN (Amem), we thus write ρ′ ∈ [ρ] to say that
the run associated to ρ′ in the region automaton is [ρ].

17

Subclass ∃-opacity weak opacity full opacity
|X| = 1

√
Theorem 2

√
Theorem 7

√
Corollary 2

|X| = 2
√
Theorem 2 ×Theorem 5

|Σ| = 1
√
Theorem 2 ×Corollary 1 ×Theorem 4

T = N
√
Theorem 2

√
Theorem 8

oERAs
√
Theorem 2

√
Theorem 9

Table 1: Summary of Section 5 (
√

= decidability, × = undecidability)

4. ∀i ∈ [[0;m]],∀ai ∈ Σ ∪ Σ0 =⇒ (∃k ∈ [[0;m]]∃K ⊆ [[0;N]], ak =2

tK ∧| {j ∈ [[0; i− 1]], aj ∈ Σ ∪Σ0} | ∈ K∧τk−τi = 1) meaning that each3

of the N observations is followed by its corresponding tick exactly one4

time unit after it.5

5. ∀i ∈ [[0;m]],∀I ⊆ [[0;N]], (ai = tI∧τm−τi ≥ 1) =⇒ ∃j ∈ [[i+1;m]],∃J ⊆6

[[0;N]], (I ⊆ J ∧ aj = tJ) meaning that if a clock ticked and the run is7

still at least one time unit long, then there will be a new tick of this clock8

within the rest of the run.9

We postpone the proof of this lemma to Appendix C.10

Note that this lemma implies that T ([ρ]) depends exclusively on the trace w,11

not on the path within the region automaton. Hence, given [ρ′] such that12

the trace of [ρ′] is w, we have T ([ρ′]) = T ([ρ]). In particular, let B be the13

belief reached in B(A) with trace w. For any region r ∈ B associated to a14

final location, there exists a run ρ′ such that Tr(ρ) = Tr(ρ′) and [ρ′] ends15

in r. As Tr(ρ) 6∈ Trpriv (UnfoldN (Amem)) by assumption, we have that r is a16

region associated to a private location. Hence Bpriv 6= ∅ and Bpub = ∅, thus17

B is a weakly discriminating belief.18

Proof (Proof of Theorem 10). From Proposition 2, deciding weak and full opac-19

ity of A amounts to checking the existence of a discriminating belief in B(A).20

This is simply achieved by a reachability test in the (doubly exponential) finite21

automaton B(A).22

7 Conclusion and perspectives23

In this paper, we addressed three definitions of opacity on subclasses of TAs, to24

circumvent the undecidability from [14]. While undecidability remains for one-25

action TAs, we retrieve decidability for one-clock TAs, or over discrete time, or26

for observable ERAs. Our result for one-clock TAs is tight, since we showed that27

increasing the number of clocks leads to undecidability. We also gain decidability28

when the attacker can only perform a finite set of observations. We summarize29

the results from Section 5 in Table 1.30

Perspectives include begin able to build a controller to ensure a TA is opaque,31

as well as investigating parametric versions of these problems, where timing32

constants considered as parameters (à la [3]) can be tuned to ensure opacity.1

18

References2

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science3

126(2), 183–235 (Apr 1994). https://doi.org/10.1016/0304-3975(94)90010-84

[2] Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class5

of timed automata. Theoretical Computer Science 211(1-2), 253–273 (1999).6

https://doi.org/10.1016/S0304-3975(97)00173-47

[3] Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:8

Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC. pp. 592–601. ACM,9

New York, NY, USA (1993). https://doi.org/10.1145/167088.16724210

[4] Ammar, I., El Touati, Y., Yeddes, M., Mullins, J.: Bounded opacity for timed11

systems. Journal of Information Security and Applications 61, 1–13 (Sep 2021).12

https://doi.org/10.1016/j.jisa.2021.10292613

[5] André, É., Kryukov, A.: Parametric non-interference in timed au-14

tomata. In: Li, Y., Liew, A. (eds.) ICECCS. pp. 37–42 (2020).15

https://doi.org/10.1109/ICECCS51672.2020.0001216

[6] André, É., Lefaucheux, E., Lime, D., Marinho, D., Sun, J.: Configuring timing pa-17

rameters to ensure execution-time opacity in timed automata. In: ter Beek, M.H.,18

Dubslaff, C. (eds.) TiCSA. Electronic Proceedings in Theoretical Computer Sci-19

ence, vol. 392, pp. 1–26 (2023). https://doi.org/10.4204/EPTCS.392.1, invited20

paper.21

[7] André, É., Lefaucheux, E., Marinho, D.: Expiring opacity problems in parametric22

timed automata. In: Ait-Ameur, Y., Khendek, F. (eds.) ICECCS. pp. 89–98 (2023).23

https://doi.org/10.1109/ICECCS59891.2023.0002024

[8] André, É., Lime, D., Marinho, D., Sun, J.: Guaranteeing timed opacity using25

parametric timed model checking. ACM Transactions on Software Engineering26

and Methodology 31(4), 1–36 (Oct 2022). https://doi.org/10.1145/350285127

[9] Arcile, J., André, É.: Timed automata as a formalism for expressing security: A28

survey on theory and practice. ACM Computing Surveys 55(6), 1–36 (Jul 2023).29

https://doi.org/10.1145/353496730

[10] Barbuti, R., Francesco, N.D., Santone, A., Tesei, L.: A notion of non-interference31

for timed automata. Fundamenta Informaticae 51(1-2), 1–11 (2002)32

[11] Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fundamenta33

Informaticae 54(2-3), 137–150 (2003)34

[12] Benattar, G., Cassez, F., Lime, D., Roux, O.H.: Control and synthesis of non-35

interferent timed systems. International Journal of Control 88(2), 217–236 (2015).36

https://doi.org/10.1080/00207179.2014.94435637

[13] Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tran-38

sition systems. International Journal of Information Security 7(6), 421–435 (2008).39

https://doi.org/10.1007/s10207-008-0058-x40

[14] Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen,41

H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S. (eds.) ISA. Lec-42

ture Notes in Computer Science, vol. 5576, pp. 21–30. Springer (2009).43

https://doi.org/10.1007/978-3-642-02617-1_344

[15] Dima, C.: Real-time automata. Journal of Automata, Languages and Combina-45

torics 6(1), 3–23 (2001). https://doi.org/10.25596/jalc-2001-00346

[16] Gardey, G., Mullins, J., Roux, O.H.: Non-interference control synthesis for security47

timed automata. Electronic Notes in Theoretical Computer Science 180(1), 35–5348

(2007). https://doi.org/10.1016/j.entcs.2005.05.0461

19

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1145/167088.167242
https://doi.org/10.1016/j.jisa.2021.102926
https://doi.org/10.1109/ICECCS51672.2020.00012
https://doi.org/10.4204/EPTCS.392.1
https://doi.org/10.1109/ICECCS59891.2023.00020
https://doi.org/10.1145/3502851
https://doi.org/10.1145/3534967
https://doi.org/10.1080/00207179.2014.944356
https://doi.org/10.1007/s10207-008-0058-x
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.1016/j.entcs.2005.05.046

[17] Mazaré, L.: Using unification for opacity properties. In: Ryan, P. (ed.) WITS. pp.2

165–176 (Apr 2004)3

[18] Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:4

Closing a decidability gap. Proceedings - Symposium on Logic in Computer Sci-5

ence 19 (05 2004). https://doi.org/10.1109/LICS.2004.13196006

[19] Wang, L., Zhan, N.: Decidability of the initial-state opacity of real-time automata.7

In: Jones, C.B., Wang, J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid8

Systems - Essays Dedicated to Professor Chaochen Zhou on the Occasion of His9

80th Birthday, Lecture Notes in Computer Science, vol. 11180, pp. 44–60. Springer10

(2018). https://doi.org/10.1007/978-3-030-01461-2_311

[20] Wang, L., Zhan, N., An, J.: The opacity of real-time automata. IEEE Transactions12

on Computer-Aided Design of Integrated Circuits and Systems 37(11), 2845–285613

(2018). https://doi.org/10.1109/TCAD.2018.28573631

20

https://doi.org/10.1109/LICS.2004.1319600
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1109/TCAD.2018.2857363

`0 `fA
`priv

(a) Apub

`0
S `f

SAS

`0
S̄ `f

S̄AS̄

`priv
S

(b) Apriv

Fig. 6: Illustrating Apub and Apriv

A Formal definitions2

Definition 12 (Public runs automaton Apub).3

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA. We define the public runs TA4

Apub = (Σ,L \ Lpriv , ∅, Lf \ Lpriv ,X, I ′, E′) with I ′ and E′ precised as follows:5

1. I ′ is the restriction I|L\Lpriv
of I to the set of locations of Apub;6

2. E′ = E \ {(`, g, a,R, `′) ∈ E | ` ∈ Lpriv ∨ `′ ∈ Lpriv} is the remaining set of7

transitions when private locations are removed from L.8

Example 4. We illustrate the constructions of Apub and Apriv in Figs. 6a and 6b.9

B Opacity of TAs over discrete time10

Lemma 1. The language of a discrete-time TA and the language of its region11

automaton are in bijection.12

Proof. Let A be a discrete-time TA. We explicit the bijection of the lemma.13

Given a path ρ of A generating the timed word w, as A includes ticks, w is14

of the form15

(t, 1) . . . (t, τ0)(a0, τ0) (t, τ0+1) . . . (t, τ1)(a1, τ1) . . . (t, τn−1+1) . . . (t, τn)(an, τn).

To the timed word w, we associate the untimed word16

tt . . . t︸ ︷︷ ︸
t0 times

a0 tt . . . t︸ ︷︷ ︸
(t1−t0) times

a1 . . . tt . . . t︸ ︷︷ ︸
(tn−tn−1) times

an.

This untimed word is produced within the region automaton by the path cor-17

responding to ρ. This association is injective as the sequence (τi)i≤n which18

was removed in the transformation depends only on the number of t of the19

timed word. Moreover, it is surjective as given an untimed word in RAA1

21

w′ = tt . . . t︸ ︷︷ ︸
k0 times

a0 tt . . . t︸ ︷︷ ︸
k1 times

a1 . . . tt . . . t︸ ︷︷ ︸
kn times

an produced by a path ρ′ of the region2

automaton, defining3

w = (a0, k0)(a1, k0 + k1) . . . (an,

n∑
i=0

ki)

we have that w is the timed word generated by the unique path of the TA4

corresponding to ρ′ and w is associated to w′.5

Proposition 1 (Decidability of language inclusion in discrete-time6

TAs). Language inclusion in discrete-time TAs is decidable.7

Proof. Let A and B be two discrete-time TAs, and let RAA and RAB be their8

respective region automata. Then from Lemma 1, we have9

Tr(A) ⊆ Tr(B) if and only if Tr(RAA) ⊆ Tr(RAB)

Thus deciding the language inclusion in discrete-time TAs amounts to solving10

the language inclusion problem in the context of finite regular automata, known11

to be decidable.12

Theorem 8 (Decidability of weak and full opacity in discrete-time13

TAs). Weak and full opacity are decidable for discrete-time TAs.14

Proof. Let A be a discrete-time automaton with private locations set Lpriv . The15

construction in Section 4.1 is still compatible with discrete time clocks so we can16

build two discrete-time TAs Apriv and Apub such that Tr(Apriv) = Trpriv (A)17

and Tr(Apub) = Trpriv (A). Then testing the weak opacity property on A is18

equivalent to testing the inclusion Tr(Apriv) ⊆ Tr(Apub) which is decidable19

by Proposition 1. Therefore the weak opacity problem in discrete-time TAs is20

decidable.21

As before, thanks to Theorem 1, we can extend this result to the full opacity22

problem.23

C Opacity with N observations24

Lemma 2. Denoting w = a1, . . . am the trace of [ρ], T ([ρ]) contains exactly the25

words (a1, τ1) . . . (am, τm) satisfying the following constraints:26

1. ∀i ∈ [[1;m]], (ai ∈ Σ ∪Σt =⇒ τi − τi−1 > 0) ∧ (ai ∈ Σ0 =⇒ τi − τi−1 = 0)27

(where τ0 = 0), meaning that only the actions of Σ0 can be made without28

any delay.29

2. ∀i, j ∈ [[0;m]],∀k ∈ [[i + 1; j − 1]],∀J,K ⊆ [[0;N]],∀I ⊆ J, (i < j ∧ ai =30

tI ∧ aj = tJ ∧ (ak = tK =⇒ K ∩ J = ∅)) =⇒ τj − τi = 1, meaning that31

two successive ticks of the same clocks are separated by exactly 1 time unit.1

22

3. ∃i ∈ [[1;m]],∃I ⊆ [[0;N]]∀j ≤ i,∀J ⊆ [[0;N]], ai = tI ∧ 0 ∈ I ∧ τi = 1 ∧ (aj =2

TJ =⇒ 0 6∈ J), meaning that the first occurrence of the tick of the clock x03

is at time 1.4

4. ∀i ∈ [[0;m]],∀ai ∈ Σ ∪ Σ0 =⇒ (∃k ∈ [[0;m]]∃K ⊆ [[0;N]], ak = tK ∧5

| {j ∈ [[0; i− 1]], aj ∈ Σ ∪Σ0} | ∈ K ∧ τk − τi = 1) meaning that each of the6

N observations is followed by its corresponding tick exactly one time unit7

after it.8

5. ∀i ∈ [[0;m]],∀I ⊆ [[0;N]], (ai = tI ∧ τm − τi ≥ 1) =⇒ ∃j ∈ [[i + 1;m]],∃J ⊆9

[[0;N]], (I ⊆ J ∧ aj = tJ) meaning that if a clock ticked and the run is still10

at least one time unit long, then there will be a new tick of this clock within11

the rest of the run.12

Proof. First remark that, given a run ρ′ ∈ [ρ], the trace of ρ′ must satisfy those13

conditions. Indeed, the first condition is ensured by the fact that in UnfoldN (A)14

transitions labeled with an action of Σ′ reset at least one clock and that, due15

to guards only actions from ε or Σ0 can be taken with a clock at 0. The third16

condition is ensured by the fact that x0 starts at 0 and whenever x0 reaches 1,17

it is reset and a tick occurs. The remaining conditions are ensured by the fact18

that a new observable action will lead to the next copy of the initial TA and19

reset the associated clock, and the only transition that can be taken when an20

activated tick clock (a tick clock that has been reset by an observation) is equal21

to 1 is the tick transition.22

Now let σ = (a1, τ1) . . . (am, τm) ∈ T ([ρ]). The existence of a run whose23

trace is σ comes from two facts: (1) a classical result on the region automaton24

guarantees the existence of runs ending with any valuation satisfying the region’s25

constraints and (2) the ticks make sure that the untimed sequence retain the26

order between the fractional parts of the timings of the observable actions.27

More formally, once a prefix σ0 = (a1, τ1) . . . (ak, τk) of σ has been observed,28

the value of the clocks of ticks are known: for all xi after observing σ0 and29

waiting τ time units, the valuation of xi, denoted vi(σ0, τ), is τ plus the difference30

between τk and the last τj such that either i ∈ aj or aj is the ith observation. We31

denote [µ]σ0 the set of valuations µ′ ∈ [µ] such that there exists τ ≤ τk+1 − τk32

(no constraint on τ if k = m) such that for all i ≤ N , µ′(xi) = vi(σ0, τ). We33

say that a set S of run satisfy every valuation of [µ]σ0
if for every valuation34

µ′ ∈ [µ]σ0
, there exists ρ′ ∈ S whose valuation in the last configuration is equal35

to µ′ for every clock below the maximum threshold, and is beyond the maximum36

threshold if µ′ is.37

More precisely, let n ∈ N and [ρ0] be a prefix of [ρ] of length n, let σ0 =38

(a1, τ1) . . . (ak, τk) be the trace of [ρ0]. We show by recurrence on n that, denoting39

r = (`, [µ]) the region in which [ρ0] ends then there exists a set S of paths in [ρ0]40

whose trace is σ0 and satisfying every valuations of [µ]σ0 .41

If n = 0, this is trivially true as r is the initial region.42

Assume the property is true for some n ∈ N, denote [ρ0] =43

[ρ−1], (`, [µ]), b, (`
′, [µ′]) and σ−1 be the trace of [ρ−1], (`, [µ]). By hypothesis,44

there is a set S of paths satisfying every valuation of [µ]σ−1 and whose prefix45

is σ−1.1

23

If b = ε, extending the paths of the set S to a set S′ of paths satisfying2

every valuation of [µ′]σ−1
and whose prefix is σ−1 can be done using the usual3

method described in [1] (either ε represents a transition, and the valuations do4

not change, or it is used to let time pass, and in this case we extend every path5

by waiting until every possible configuration of the next region).6

If b = ak ∈ Σ0, by the first constraint of the lemma, we know that no7

time elapsed since the last reset of a clock tick. In particular, this means that8

extending the paths of S by directly taking the transition is possible (as it is9

possible in the region automaton) and the valuations reached by this extension10

are the valuations of [µ]σ−1
with at least one clock reset by the transition. Due to11

the reset, no time can elapse in the region (`′, [µ′]), hence these extended paths12

satisfy every valuation of [µ′]σ0 .13

If b = ak ∈ Σ ∪ Σt, let S′ be the subset of S of runs which can wait un-14

til τk without changing region. S′ is not empty as, while the boundaries of the15

valuations of [µ]σ−1
depend on the ticks clock, due to conditions 2 to 5 of the16

lemma, activated ticks occur every time unit, and thus τk − τk−1 (with τ0 = 0)17

is smaller than the maximum delay required to reach the next region boundary.18

We extend the paths of S′ by waiting until τk, and taking the transition. Again,19

this transition produces at least one reset, so no time can elapse after it with-20

out changing region again. This extended set of paths satisfies every valuation21

of [µ′]σ0
.22

This concludes the recurrence, and in particular when n = m, the set we23

built contains at least one run whose trace is σ.805

24

	Opacity problems in subclasses of timed automataThis is the version with comments. To disable comments, comment out line 3 in the LaTeX source.

