
On the Monniaux Problem in
Abstract Interpretation

Nathanaël Fijalkow, Engel Lefaucheux, Pierre Ohlmann,
Joël Ouaknine, Amaury Pouly and James Worrell

LaBRI, Max Planck Institute for Software Systems, IRIF, Oxford University

IRISA, November 2019



The concept of an invariant is one of the most important
in mathematics.

Encyclopedia of Mathematics, Kluwer, 2002



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I

Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M

Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U

Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU

Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



The MU Puzzle

A string-rewriting system using letters M, I, and U

0. We start with MI

1. XI → XIU

You can add U at the end of any string ending in I
Example: MI becomes MIU

2. MX → MXX

You can double the string after the M
Example: MIU becomes MIUIU

3. XIIIY → XUY

You can replace any III with a U
Example: MUIIIU becomes MUUU

4. XUUY → XY

You can remove any UU
Example: MUUU becomes MU

Starting from MI, the goal is to produce MU



Can It Be Solved?

MIU

MI

MIU

MIUIU

MIUIUIUIU

MII

MIIII

MIIIIU

MIIU

MIIUIIU MIIIIIIII MUI

?
? ?

?

?

?
MU

2

2

2

3

2

12

1

1

2 3



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

Y

XIIIY?

XX



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

XY :=XUY

XIU

XI= ?

s := MX=s ?

=s XIIIY?=s UUX Y?

s 

s :=MI

s :=MXX

s := s 



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

XX

:=XUY

XIU

XI= ?

s := MX=s ?

=s XIIIY?=s UUX Y?

s 

s :=MI

the number of "  " in I s

introduce "  " to counti

s :=XY

s :=M

s 



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

XX

:=XUY

XIU

:= 1i

XI= ?

s := MX=s ?

=s XIIIY?=s UUX Y?

s 

the number of "  " in I s

introduce "  " to counti

s :=XY

s :=M

s 



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

:=

:=XUY

:= 1i

MX=s ?

=s XIIIY?=s UUX Y?

the number of "  " in I s

introduce "  " to counti

s :=XY

MXXs 

s 



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

XX

:=XUY

:= 1i

:= 2i i

=s XIIIY?=s UUX Y?

the number of "  " in I s

introduce "  " to counti

s :=XY s 



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

:=

i

:= 2i i

i

:= 1

=s UUX Y?

the number of "  " in I s

introduce "  " to counti

s :=XY

XX

Y
i −3



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

:=

i

:= 2i i

i

:= 1

the number of "  " in I s

introduce "  " to counti

XX

Y
i −3



Can This (Nondeterministic) Program Halt?

s := MI;
while s 6= MU do

choose
{s = XI} → s := XIU;
{s = MX} → s := MXX;
{s = XIIIY} → s := XUY;
{s = XUUY} → s := XY;

:= 1i

:= 2i i

i:=i ≡

the number of "  " in I s

introduce "  " to counti

XX

Y
i −31 or 2   (mod 3)



A Polynomial Program Invariant

:= 1i

:= 2i i

i:=i ≡ i −31 or 2   (mod 3)

Define the polynomial p(x) = (x − 1)(x − 2)

Then this program satisfies

p(i) = 0

(over Z3)



A Polynomial Program Invariant

:= 1i

:= 2i i

i:=i ≡ i −31 or 2   (mod 3)

Define the polynomial p(x) = (x − 1)(x − 2)

Then this program satisfies

p(i) = 0

(over Z3)



A Polynomial Program Invariant

:= 1i

:= 2i i

i:=i ≡ i −31 or 2   (mod 3)

Define the polynomial p(x) = (x − 1)(x − 2)

Then this program satisfies

p(i) = 0

(over Z3)



Automated Invariant Generation: A Challenge

The classical approach to the verification of temporal
safety properties of programs requires the construction of
inductive invariants at each program point, that is,
assertions that are true on every program execution
reaching that point, and moreover, that are closed
under the strongest postcondition operator. Automation
of this construction is the main challenge in
program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybelchenko
Invariant Synthesis for Combined Theories, 2007



Inductive Invariants

invariant = overapproximation (of the reachable states)

inductive invariant =

{
overapproximation
preserved by the transition relation



Inductive Invariants

invariant = overapproximation (of the reachable states)

inductive invariant =

{
overapproximation
preserved by the transition relation



Inductive Invariants

x , y , z range over Z (or Q)

21

3

f1

f4

f3

f2

f5

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

21

3

f1

f4

f3

f2

f5

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3

f1

f4

f3

f2

f5

21

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3

f1

f4

f3

f2

f5

21

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3
f4

f3

f2

f5

2
f1

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3
f4

f3

f2

f5

2
f1

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3
f4

f3

f5

2
f1 f21

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3
f4

f3

f5

2
f1 f21

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3
f4

f3

f5

2
f1 f21

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3
f5

2
f1 f2

f4

f3

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3

2
f1 f2

f4

3

f5

f
1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3

2
f1 f2

f4

3

f5

f
1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3

2
f1 f2

f4

3

f5

f
1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

3

2
f1 f2

f4

f3

f5

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

1 S 2S

S3

2
1 f2

f4

f3

f5

f

3

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

S

3

S 21

S

2
1 f2

f4

f3

f5

f

3

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

I S11

S3

I 2

I 3

S 2

2
1 f2

f4

f3

f5

f

3

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

I

I 3

I
1

2

2
1 f2

f4

f3

5

f

3
f

1

〈I1, I2, I3〉 is an invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

2
I1

I

I 3

f

1

3

5

f

3

2
1 f2

f4

f

〈I1, I2, I3〉 is an inductive invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

I

3

2
1

I

I

2
1 f2

f4

f3

5

f

3
f

1

〈I1, I2, I3〉 is an inductive invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

I S11

S3

I 2

I 3

S 2

2
1 f2

f4

f3

f5

f

3

1

〈I1, I2, I3〉 is an inductive invariant (I1, I2, I3 ⊆ R3)



Inductive Invariants

x , y , z range over Z (or Q)

1 S 2S

S3

2
1 f2

f4

f3

f5

f

3

1

〈S1,S2, S3〉 is always an inductive invariant I1, I2, I3 ⊆ R3



Inductive Invariants

x , y , z range over Z (or Q)

2
1 f2

f4

f3

f5

f

3

1

〈R3,R3,R3〉 is also always an inductive invariant I1, I2, I3 ⊆ R3



Inductive Invariants

x , y , z range over Z (or Q)

I

3

11

S3

I 2

I

S 2S

2
1 f2

f4

f3

f5

f

3

BAD!

1

BAD! BAD!

A good invariant is worth a thousand reachability queries!R3〉



Generating Inductive Invariants

Choose the right abstract domain

Some domains always have ‘best’ (strongest, smallest)
invariants, others not

Compute an invariant!

Many eclectic methods: fixed-point computations, constraint
solving, interpolation, abduction, machine learning, . . .
Some approaches require ‘widening’ to ensure termination
Other techniques invoke e.g. dimension or algebraic arguments
Often trade-off between precision and complexity . . .



Generating Inductive Invariants

Choose the right abstract domain

Some domains always have ‘best’ (strongest, smallest)
invariants, others not

Compute an invariant!

Many eclectic methods: fixed-point computations, constraint
solving, interpolation, abduction, machine learning, . . .
Some approaches require ‘widening’ to ensure termination
Other techniques invoke e.g. dimension or algebraic arguments
Often trade-off between precision and complexity . . .



A Menagerie of Abstract Domains

Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



A Menagerie of Abstract Domains

Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



A Menagerie of Abstract Domains

Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



A Menagerie of Abstract Domains

Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



A Menagerie of Abstract Domains

Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



Comparing Abstractions

Original set:



Comparing Abstractions

Interval abstraction: g



Comparing Abstractions

Octagonal abstraction:



Comparing Abstractions

Polyhedral abstraction:



Comparing Abstractions

Algebraic/semialgebraic/semilinear abstraction :



Comparing Abstractions

Interval ≤ Octagonal ≤ Semilinear ≤ Semialgebraic

≤ ≤

Linear ≤ Algebraic
l l

linear polynomial



Why Linear Invariants Are Not Enough

s := 0;
x := 0;
while 〈. . .〉 do
x := x + 1;
s := s + x ;

The loop invariant is:

s =
x(x + 1)

2

Or equivalently:

p(s, x) = 2s − x2 − x = 0



Why Linear Invariants Are Not Enough

s := 0;
x := 0;
while 〈. . .〉 do
x := x + 1;
s := s + x ;

The loop invariant is:

s =
x(x + 1)

2

Or equivalently:

p(s, x) = 2s − x2 − x = 0



Why Linear Invariants Are Not Enough

s := 0;
x := 0;
while 〈. . .〉 do
x := x + 1;
s := s + x ;

The loop invariant is:

s =
x(x + 1)

2

Or equivalently:

p(s, x) = 2s − x2 − x = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: 9x2 − 24xy − x + 16y2 + y = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: 9x2 − 24xy − x + 16y2 + y = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: 9x2 − 24xy − x + 16y2 + y = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: 9x2 − 24xy − x + 16y2 + y = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: 9x2 − 24xy − x + 16y2 + y = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: 9x2 − 24xy − x + 16y2 + y = 0



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Deciding termination of simple linear loops is open!

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao



A Class of Decision Problems

The Monniaux Problem

Given a program, a safety specification and an abstract domain
does there exist an adequate inductive invariant?

“We started this work hoping to vindicate forty
years of research on heuristics by showing that
the existence of polyhedral inductive separating
invariants in a system with transitions in linear
arithmetic (integer or rational) is undecidable.”
David Monniaux



A Class of Decision Problems

The Monniaux Problem

Given a program, a safety specification and an abstract domain
does there exist an adequate inductive invariant?

“We started this work hoping to vindicate forty
years of research on heuristics by showing that
the existence of polyhedral inductive separating
invariants in a system with transitions in linear
arithmetic (integer or rational) is undecidable.”
David Monniaux



What Are Affine Programs?

21

3

f1

f4

f3

f2

f5

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

21

3

f1

f4

f3

f2

f5

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

21

3

f1

f4

f3

f2

f5

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

21

3

f1

f4

f3

f2

f5

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

1

3
f4

f3

f2

f5

2
− 3:=7x + 2zy

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

1

3
f4

f3

f2

f5

2
− 3:=7x + 2zy

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

1

3

f3

f2

f5

2

:=

x :=7 − 3 + 2zy

y ?

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

1

3

f3

f2

f5

2

:=

x :=7 − 3 + 2zy

y ?

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



What Are Affine Programs?

1

3

f3

f2

f5

2

:=

x :=7 − 3 + 2zy

y ?

Only ‘nondeterministic’ branching (no conditionals)

All assignments are affine (or linear)

Also allow nondeterministic assignments x := ?

Affine programs:

can overapproximate more complex programs

already cover a range of existing formalisms, e.g.
probabilistic / quantum / quantitative automata, . . .



From Affine Programs to Linear Semigroups

21

3

f1

f4

f3

f2

f5

1M

4M
5M

2M

3M

each Mi ∈ Qd2



Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ 〈M1, . . . ,Mk〉?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.



Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ 〈M1, . . . ,Mk〉?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.



Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ 〈M1, . . . ,Mk〉?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.



State of the Menagerie

Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



State of the Menagerie

X Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

X Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



Karr’s Algorithm, Acta Informatica 76

Theorem (Karr 76)

There is an algorithm which computes, for any given affine
program over Q, its strongest linear inductive invariant.



Smallest Algebraic Invariants

Theorem (Hrushovski, Ouaknine, Pouly, Worrell 18)

The problem of the existence of algebraic inductive safety
invariants for affine program is decidable.

Smallest algebraic set containing all reachable configurations
⇐⇒

Zariski closure of the set of reachable configurations

Theorem (Hrushovski, Ouaknine, Pouly, Worrell 18)

The presence of guards or polynomial transitions makes the
problem undecidable.



Smallest Algebraic Invariants

Theorem (Hrushovski, Ouaknine, Pouly, Worrell 18)

The problem of the existence of algebraic inductive safety
invariants for affine program is decidable.

Smallest algebraic set containing all reachable configurations
⇐⇒

Zariski closure of the set of reachable configurations

Theorem (Hrushovski, Ouaknine, Pouly, Worrell 18)

The presence of guards or polynomial transitions makes the
problem undecidable.



Smallest Algebraic Invariants

Theorem (Hrushovski, Ouaknine, Pouly, Worrell 18)

The problem of the existence of algebraic inductive safety
invariants for affine program is decidable.

Smallest algebraic set containing all reachable configurations
⇐⇒

Zariski closure of the set of reachable configurations

Theorem (Hrushovski, Ouaknine, Pouly, Worrell 18)

The presence of guards or polynomial transitions makes the
problem undecidable.



State of the Menagerie

X Intervals [Cousot, Cousot 76], [Harrison 77]

x ∈ [0, 4] ∧ y ∈ [2,∞)

X Octagons [Miné 06]

x + y − 2 ≤ 2 ∧ x ≤ 3 ∧ y − x ≤ 1

X Linear / Algebraic sets [Müller-Olm, Seidl 04]

x3 − y2 = 0 ∧ x2yz5 − 3yz = 0

Polyhedral / Semilinear sets [Cousot, Halbwachs 78]

x + 2y − 3z + 4 ≤ 0 ∨ 2x + 7y + 2z ≥ 0

Semialgebraic sets [Bagnara et al. 05]

x2 + y2 + z2 ≤ 0 ∨ x2yz5 − 3yz + 6 ≥ 0



Undecidability for Semilinear invariants

Theorem

The problem of the existence of semilinear safety invariants is
undecidable.

M1M2

Only two transitions required (matrices of size 336).

A single ”bad” point.

Reachability of the ”bad” point is not possible.

Invariant of the form: I = S ∪ F
S is a simple safe set.
F is a finite number of points.



Undecidability for Semilinear invariants

Theorem

The problem of the existence of semilinear safety invariants is
undecidable.

M1M2

Only two transitions required (matrices of size 336).

A single ”bad” point.

Reachability of the ”bad” point is not possible.

Invariant of the form: I = S ∪ F
S is a simple safe set.
F is a finite number of points.



Undecidability for Semilinear invariants

Theorem

The problem of the existence of semilinear safety invariants is
undecidable.

M1M2

Only two transitions required (matrices of size 336).

A single ”bad” point.

Reachability of the ”bad” point is not possible.

Invariant of the form: I = S ∪ F
S is a simple safe set.
F is a finite number of points.



Undecidability for Semilinear invariants

Theorem

The problem of the existence of semilinear safety invariants is
undecidable.

M1M2

Only two transitions required (matrices of size 336).

A single ”bad” point.

Reachability of the ”bad” point is not possible.

Invariant of the form: I = S ∪ F
S is a simple safe set.
F is a finite number of points.



Decidability for Single Loop

While x /∈ Bad do
x := Mx

Theorem

The problem of the existence of semilinear safety invariants for
while loop is decidable.

Build the Jordan normal form;

Build invariant if there exist ”simple” eigenvalues;

Prove the absence of non-trivial semilinear invariant otherwise.



Decidability for Single Loop

While x /∈ Bad do
x := Mx

Theorem

The problem of the existence of semilinear safety invariants for
while loop is decidable.

Build the Jordan normal form;

Build invariant if there exist ”simple” eigenvalues;

Prove the absence of non-trivial semilinear invariant otherwise.



Decidability for Single Loop

While x /∈ Bad do
x := Mx

Theorem

The problem of the existence of semilinear safety invariants for
while loop is decidable.

Build the Jordan normal form;

Build invariant if there exist ”simple” eigenvalues;

Prove the absence of non-trivial semilinear invariant otherwise.



Decidability for Single Loop

While x /∈ Bad do
x := Mx

Theorem

The problem of the existence of semilinear safety invariants for
while loop is decidable.

Build the Jordan normal form;

Build invariant if there exist ”simple” eigenvalues;

Prove the absence of non-trivial semilinear invariant otherwise.



Decidability for Single Loop

While x /∈ Bad do
x := Mx

Theorem

The problem of the existence of semilinear safety invariants for
while loop is decidable.

Build the Jordan normal form;

Build invariant if there exist ”simple” eigenvalues;

Prove the absence of non-trivial semilinear invariant otherwise.



Case |λ| > 1

Starting in x
Bad =y
Sequence in the eigenspace is a diverging spiral

Most difficult case: modulus 1 and not root of unity.
→ Only semilinear invariant given by relations between eigenvalues



Case |λ| > 1

Starting in x
Bad =y
Sequence in the eigenspace is a diverging spiral

Most difficult case: modulus 1 and not root of unity.

→ Only semilinear invariant given by relations between eigenvalues



Case |λ| > 1

Starting in x
Bad =y
Sequence in the eigenspace is a diverging spiral

Most difficult case: modulus 1 and not root of unity.
→ Only semilinear invariant given by relations between eigenvalues



What about Convex Invariant?

X simplicity of representation and implementation

X algorithmic tractability and scalability

X good termination heuristics

7 lack of expressivity

Theorem (Monniaux 19)

The problem of the existence of convex semilinear safety invariants
for affine programs with polynomial guards is undecidable.

The general case remains open and challenging.



What about Convex Invariant?

X simplicity of representation and implementation

X algorithmic tractability and scalability

X good termination heuristics

7 lack of expressivity

Theorem (Monniaux 19)

The problem of the existence of convex semilinear safety invariants
for affine programs with polynomial guards is undecidable.

The general case remains open and challenging.



What about Convex Invariant?

X simplicity of representation and implementation

X algorithmic tractability and scalability

X good termination heuristics

7 lack of expressivity

Theorem (Monniaux 19)

The problem of the existence of convex semilinear safety invariants
for affine programs with polynomial guards is undecidable.

The general case remains open and challenging.



What about Convex Invariant?

X simplicity of representation and implementation

X algorithmic tractability and scalability

X good termination heuristics

7 lack of expressivity

Theorem (Monniaux 19)

The problem of the existence of convex semilinear safety invariants
for affine programs with polynomial guards is undecidable.

The general case remains open and challenging.



Ongoing Research Programme

The Monniaux Problem for convex invariants

Orbit-finiteness for polynomial programs

Algebraic and semialgebraic invariants for
continuous dynamical systems & hybrid automata



A Bouncing Ball

vx = c

x = tc

vy
2 + 2g(y − h) = 0



A Linear Hybrid Automaton (LHA)

vx = c

x = tc

vy
2 + 2g(y − h) = 0



Strongest Algebraic Invariants for LHA

vx = c

x = tc

vy
2 + 2g(y − h) = 0



Strongest Algebraic Invariants for LHA

vx = c

x = tc

vy
2 + 2g(y − h) = 0



Strongest Algebraic Invariants for LHA

vx = c

x = tc

vy
2 + 2g(y − h) = 0


